Ракетные двигатели: от китайских фейерверков до космических кораблей

Устройство

Первый контур вмещает в себя компрессоры высокого и низкого давления, камеру сгорания, турбины высокого и низкого давления и сопло. Второй контур состоит из направляющего аппарата и сопла. Такая конструкция является базовой, но возможны и некоторые отклонения, например, потоки внутреннего и внешнего контура могут смешиваться и выходить через общее сопло, или же двигатель может оснащаться форсажной камерой.

Теперь коротко о каждом составляющем элементе ТРДД. Компрессор высокого давления (КВД) – это вал, на котором закреплены подвижные и неподвижные лопатки, формирующие ступень. Подвижные лопатки при вращении захватывают поток воздуха, сжимают его и направляют внутрь корпуса. Воздух попадает на неподвижные лопатки, тормозится и дополнительно сжимается, что повышает его давление и придает ему осевой вектор движения. Таких ступеней в компрессоре несколько, а от их количества напрямую зависит степень сжатия двигателя. Такая же конструкция и у компрессора низкого давления (КНД), который расположен перед КВД. Отличие между ними заключается только в размерах: у КНД лопатки имеют больший диаметр, перекрывающий собой сечение и первого и второго контура, и меньшее количество ступеней ( от 1 до 5).

В камере сгорания сжатый и нагретый воздух перемешивается с топливом, которое впрыскивается форсунками, а полученный топливный заряд воспламеняется и сгорает, образуя газы с большим количеством энергии. Камера сгорания может быть одна, кольцевая, или же выполняться из нескольких труб.

Турбина по своей конструкции напоминает осевой компрессор: те же неподвижные и подвижные лопатки на валу, только их последовательность изменена. Сначала расширенные газы попадают на неподвижные лопатки, выравнивающие их движение, а потом на подвижные, которые вращают вал турбины. В ТРДД турбин две: одна приводит в движение компрессор высокого давления, а вторая – компрессор низкого давления. Работают они независимо и между собой механически не связаны. Вал привода КНД обычно расположен внутри вала привода КВД.

Сопло – это сужающаяся труба, через которую выходят наружу отработанные газы в виде реактивного потока. Обычно каждый контур имеет свое сопло, но бывает и так, что реактивные потоки на выходе попадают в общую камеру смешения.

Внешний, или второй, контур – это полая кольцевая конструкция с направляющим аппаратом, через которую проходит воздух, предварительно сжатый компрессором низкого давления, минуя камеру сгорания и турбины. Этот поток воздуха, попадая на неподвижные лопасти направляющего аппарата, выравнивается и движется к соплу, создавая дополнительную тягу за счет одного только сжатия КНД без сжигания топлива.

Форсажная камера – это труба, размещенная между турбиной низкого давления и соплом. Внутри у нее установлены завихрители и топливные форсунки с воспламенителями. Форсажная камера дает возможность создания дополнительной тяги за счет сжигания топлива не в камере сгорания, а на выходе турбины. Отработанные газы после прохождения ТНД и ТВД имеют высокую температуру и давления, а также значительное количество несгоревшего кислорода, поступившего из второго контура. Через форсунки, установленные в камере, подается топливо, которое смешивается с газами, и воспламеняется. В результате тяга на выходе возрастает порой в два раза, правда, и расход топлива при этом тоже растет. ТРДД, оснащенные форсажной камерой, легко узнать по пламени, которое вырывается из их сопла во время полета или при запуске.

форсажная камера в разрезе, на рисунке видны завихрители.

Самым важным параметром ТРДД является степень двухконтурности (к) – отношение количества воздуха, прошедшего через второй контур, к количеству воздуха, прошедшего через первый. Чем выше этот показатель, тем более экономичным будет двигатель. В зависимости от степени двухконтурности можно выделить основные виды двухконтурных турбореактивных двигателей. Если его значение к<2, это обычный ТРДД, если же к>2, то такие двигатели называются турбовентиляторными (ТВРД). Есть также турбовинтовентиляторные моторы, у которых значение достигает и 50-ти, и даже больше.

В зависимости от типа отведения отработанных газов различают ТРДД без смешения потоков и с ним. В первом случае каждый контур имеет свое сопло, во втором газы на выходе попадают в общую камеру смешения и только потом выходят наружу, образуя реактивную тягу. Двигатели со смешением потоков, которые устанавливаются на сверхзвуковые самолеты, могут снабжаться форсажной камерой, которая позволяет увеличивать мощность тяги даже на сверхзвуковых скоростях, когда тяга второго контура практически не играет роли.

Принцип работы реактивного двигателя

В реактивных двигателях струи воздушных потоков, которые попадают в двигатели, встречаются с обращающимися с колоссальной скоростью турбинами компрессоров, которые засасывают воздух из окружающей среды (при помощи встроенных вентиляторов). Следовательно, происходит решение двух задач:

  • Первичное забирание воздуха;
  • Охлаждение в целом всего двигателя.

Это могут быть, в частности, смеси воздуха и керосина, как в турбореактивных двигателях современных реактивных самолетах, либо смеси жидкого кислорода и спирта, такими обладают кое-какие жидкостные ракетные двигатели, либо еще какое-то твердое топливо в пороховых ракетах. Как только образовалась топливно-воздушная смесь, происходит ее воспламенение с выделением энергии в виде тепла. Таким образом, топливом в реактивных двигателях могут быть только такие вещества, которые в результате химических реакций в двигателях (при возгорании) выделяют тепло, при этом образуя множество газов.

При возгорании совершается существенное разогревание смеси и деталей вокруг с объемным расширением. Собственно говоря, реактивные двигатели пользуются для продвижения управляемыми взрывами. Камеры сгорания в реактивных двигателях — это одни из самых горячих элементов (температурный режим в них может достигать до 2700 °С), и они требуют постоянного интенсивного охлаждения.

Турбореактивные двигатели функционируют несколько иначе. Так, газы, после камер сгорания, вначале проходят турбинами, которым отдают свою тепловую энергию. Это делается для того, чтобы привести в движение компрессоры, которые послужат для сжатия воздуха перед камерой сгорания. В любом случае, сопла остаются последними частями двигателей, через которые протекут газы. Собственно они и формируют непосредственно реактивную струю.

В сопла направляют холодный воздух, который нагнетается при помощи компрессоров, чтобы охлаждать внутренние детали двигателей. Реактивные сопла могут обладать различными конфигурациями и конструкциями исходя из разновидностей двигателей. Так, когда скорость проистекания должна быть выше скорости звука, тогда соплам придаются формы расширяющихся труб или же вначале суживающиеся, а далее расширяющиеся (так называемые сопла Лаваля). Только с трубами такой конфигурации газы разгоняются до сверхзвуковых скоростей, при помощи чего реактивные самолеты перешагивают «звуковые барьеры».

Исходя из того, задействуется ли в процессе работы реактивных двигателей окружающая среда, они подразделяются на основные классы воздушно-реактивных двигателей (ВРД) и ракетных двигателей (РД). Все ВРД являются тепловыми двигателями, рабочие тела которых образуются тогда, когда происходит реакция окисления горючих веществ с кислородом воздушных масс. Поступающие из атмосферы воздушные потоки составляют основу рабочих тел ВРД. Таким образом, аппараты с ВРД несут на борту источники энергии (топливо), но большая часть рабочих тел черпается из окружающей среды.

К аппаратам ВРД относятся:

  • Турбореактивные двигатели (ТРД);
  • Прямоточные воздушно-реактивные двигатели (ПВРД);
  • Пульсирующие воздушно-реактивные двигатели (ПуВРД);
  • Гиперзвуковые прямоточные воздушно-реактивные двигатели (ГПВРД).

Пистолет-пулемет Шпагина

Навеска пороха Сокол для 16 калибра

Недостатки реактивного двигателя

  • Создает сильный шум при работе. При взлете реактивного самолёта создается шум до 120 децибел. Для человеческого уха это значение близко к болевому порогу. Если стоять на расстоянии 100 метров от места взлета космического корабля, можно получить контузию. Ведь уровень шума достигает 150 децибел. Ученым пока не удается подавить шум от реактивного движителя или решить эту проблему иным способом.
  • Расходует большой объем топлива. Он невероятно прожорлив. Чтобы вывести на орбиту ракетную систему с исходным весом 3000 тонн, необходима установка пяти таких двигателей. Они придают рабочему телу скорость 3 км/с. При этом высвобождается 10 тонн отработанных газов в секунду. За 4 секунды в камерах без остатка сгорает одна цистерна ракетного топлива.
  • Ограниченный ресурс для космических полетов. Все виды топлива, которые применяют для ракет, выделяют ограниченное количество энергии. Этого недостаточно для совершения полетов в пределах Галактики и даже между планетами Солнечной системы. Перспективным направлением считается использование ядерной энергии.
  • Большой вес и размер летательных аппаратов. Перед учеными, изучающими космос, стоят колоссальные задачи. Одна из главных – создание летательного аппарата для межпланетных и межзвездных перелетов. Они научились выводить на земную орбиту ракеты, спутники, достигли Луны. Для дальних полетов использовать реактивный двигатель невыгодно и нецелесообразно. Ученые подчитали, что для полета ракеты на Марс, ее стартовый вес должен составлять – 30 000 тонн, а на Юпитер – 250 000 тонн. Соответственно, увеличатся и размеры летательных аппаратов.
  • Топливо расходуется быстро. Для длительного полета необходим большой объем энергоносителя. Емкости с горючим составляют значительную часть от массы самолёта или космического корабля.

Как устроены ракетные двигатели (3 минуты чтения и все понятно)

Особенности конструкции турбореактивного двигателя

ТРД состоит из следующих элементов:

  • входного устройства;
  • компрессора;
  • камеры сгорания;
  • турбины;
  • сопла.

Во время полета набегающий поток воздуха тормозится во входном устройстве: его скорость превращается в давление. Далее струя воздуха поступает в компрессор, который еще больше увеличивает степень ее сжатия. В камере сгорания происходит нагревание при сжигании топлива. Из нее предельно разогретый и сжатый поток направляется в турбину. Там газы совершают работу, вращая лопатки, которая передается компрессору и другим вспомогательным агрегатам.

При выходе из турбины ТРД газ имеет давление, значительно превосходящее атмосферное. Благодаря этому достигается высокая скорость его истечения из выходного сопла, что создает реактивную тягу. В 60-е и 70-е годы прошлого столетия ТРД широко применялись на различных типах гражданских и военных самолетов. Позже им на смену пришли двухконтурные турбореактивные двигатели (ТРДД), имеющие лучший КПД, особенно при полетах на дозвуковых скоростях. По существу, сегодня они являются основными моторами современной авиации. Каков же принцип работы ВРД подобного типа?

Внутренний (первый) контур любого ТРДД представляет собой, по сути, обычный турбореактивный двигатель. Воздух, пройдя воздухозаборник, попадает в низконапорный компрессор, называемый еще вентилятором. После этого он разделяется на два потока: один, из которых попадает во внутренний контур, где проходит обычный для ТРД цикл, описанный выше. Второй входит в наружный контур, минуя турбину и камеру сгорания, и попадает в сопло, где смешивается с потоком, выходящим из первого контура. Такой тип двигателя называется ТРДД со смешением потоков.

https://youtube.com/watch?v=-_qi7ZaQcK4

Благодаря наличию внешнего контура общая скорость истечения газа из сопла уменьшается, что повышает тяговый КПД. Важнейшей характеристикой любого ТРДД является степень его двухконтурности – это отношение расхода воздуха через внутренний и внешний контур. Двигатели с большой степенью двухконтурности (выше 2) называются турбовентиляторными. Главным недостатком моторов этого типа является их значительные размеры и масса, а достоинством – высокая экономичность. Турбовентиляторными двигателями оснащается большинство коммерческих авиалайнеров и транспортных самолетов.

Существует несколько способов повышения эффективности работы ТРД и ТРДД:

  • форсажная камера;
  • регулируемое сопло;
  • управление вектором тяги.

Любой ТРД имеет резерв мощности: избыток кислорода в камере сгорания. Однако использовать его напрямую – через увеличение впрыска топлива – нельзя: более высокую температуру не выдерживают детали двигателя. Конструкторы выбрали другой путь, и он оказался правильным: между турбиной и соплом сжигается дополнительное топливо, что увеличивает температуру рабочего тела и значительно повышает тягу (до 1,5 раза). Форсажные камеры в основном устанавливаются на боевых самолетах.

Регулируемое сопло состоит из подвижных продольных элементов, управляя положением которых, можно изменять геометрию самой узкой части выходного отверстия двигателя. Это позволяет оптимизировать работу мотора на разных его режимах.

Как устроен ядерный ракетный двигатель

Что же представляет собой ядерный ракетный двигатель (ЯРД)? Многие его системы устроены так же, как у жидкостного ракетного двигателя (ЖРД). Только температура рабочего тела, истекающего из сопла и создающего тягу, повышается не за счет реакции окисления (горения) двух компонентов, а за счет тепловой энергии, выделяющейся в процессе деления ядер радиоактивного вещества.

Вместо камеры сгорания, как у жидкостного двигателя, в ядерном двигателе размещен реактор, способный нагреть газ более чем до 3000 К. Эта температура ограничивается стойкостью применяемых материалов.

Но почему ядерный ракетный двигатель в несколько раз эффективнее ЖРД? Ведь он гораздо сложнее, имеет во много раз большую массу, нуждается в специальных системах защиты и безопасности, громоздок. Дело в том, что в реакторе можно разогревать любой газ, а энергетическая эффективность ракетного двигателя тем выше, чем это рабочее тело имеет меньшую молекулярную массу.

Вот и получается, что если в ядерном двигателе применить водород, то скорость истечения его из сопла будет в 3 раза выше, чем в лучшем – кислородно-водородном ЖРД. Все потому, что молекулярная масса в первом случае – 2 г/моль, а во втором – 18. Значит, для космического полета потребуется существенно меньше рабочего тела.

Общая схема ядерного двигателя для космического корабля

Делящееся вещество в активной зоне реактора может находиться в твердом, жидком или газообразном состоянии. До полноразмерных натурных испытаний дошли ЯРД только первого типа. Их реакторы состоят из тепловыделяющих сборок, содержащих соединение урана-235 с замедлителем нейтронов (для уменьшения массы урана с десятков до нескольких килограммов) и окруженных отражателем нейтронов, а также из устройств, обеспечивающих запуск, регулирование и остановку.

Гербы и эмблемы Вооружённых СилПарашютно-десантные, десантно-штурмовые полки

Немного теории или как летают самолеты

Основным параметром, определяющим характеристики работы любого реактивного двигателя, является тяга (или сила тяги), которую мотор развивает в сторону движения летательного аппарата. Она описывается формулой:

Для ее создания необходимо несколько составляющих:

  • Источник первичной энергии, превращающийся в кинетическую энергию реактивной струи;
  • Рабочее тело, которое образует поток и выбрасывается из РД;
  • Сам реактивный двигатель, где происходят обозначенные процессы.

В ВРД в качестве первичной используется энергия сгорания химических веществ, то есть – это типичный тепловой двигатель. Главное условие функционирования подобной системы – превышение давления рабочего тела над атмосферным перед началом цикла расширения. Причем чем больше эта разница, тем выше эффективность ВРД. Все существующие в настоящий момент типы реактивных двигателей в первую очередь отличаются способом достижения этого перепада давлений, именно он и определяет их основные технические особенности.

Рабочее тело воздушных реактивных двигателей представляет собой смесь продуктов сгорания топлива с фракциями воздуха, оставшимися после использования кислорода. Для окисления 1 кг керосина – основного топлива для реактивных двигателей – необходимо примерно 15 кг воздуха.

В состав конструкции любого ВРД входит камера сгорания, где происходит окисление горючего, и реактивное сопло, из которого выбрасывается раскаленный газ, а тепловая энергия превращается в кинетическую, создавая при этом тягу.

Главная

Историческая справка

Таможенные ограничения

Что такое самолет с атомным двигателем?

Во время Холодной войны были предприняты попытки создания реактивного двигателя не на химической реакции, а на тепле, который бы вырабатывал ядерный реактор. Его ставили вместо камеры сгорания.

Воздух проходит через активную зону реактора, понижая его температуру и повышая свою. Он расширяется и истекает из сопла со скоростью, большей чем скорость полета.

Комбинированный турбреактивно-атомный двигатель.

В СССР проводились его испытания на базе ТУ-95. В США тоже не отставали от ученых в Советском Союзе.

В 60х годах исследования в обеих сторонах постепенно прекратились. Основными тремя проблемами, которые помешали разработке, стали:

  • безопасность летчиков во время полета;
  • выброс радиоактивных частиц в атмосферу;
  • в случае падения самолета, радиоактивный реактор может взорваться, нанеся непоправимый вред всему живому.

Галерея

Устройство реактивного двигателя

основные детали реактивного двигателя

В начале турбины всегда стоит вентилятор, который засасывает воздух из внешней среды в турбины. Вентилятор обладает большой площадью и огромным количеством  лопастей специальной формы, сделанных из титана. Основных задач две – первичный забор воздуха и охлаждение всего двигателя в целом, путем прокачивание воздуха между внешней оболочкой двигателя и внутренними деталями. Это охлаждает камеры смешивания и сгорания и не дает им разрушится.

Сразу за вентилятором стоит мощный компрессор, который нагнетает воздух под большим давлением в камеру сгорания.

Камера сгорания выполняет еще и роль карбюратора, смешивая топливо с воздухом. После образования топливо воздушной смеси она поджигается. В процессе возгорания происходит значительный разогрев смеси и окружающих деталей, а также объемное расширение. Фактически реактивный двигатель использует для движения управляемый взрыв.

Камера сгорания реактивного двигателя одна из самых горячих его частей  – её необходимо постоянно интенсивное охлаждение. Но и этого недостаточно. Температура  в ней достигает 2700 градусов, поэтому её часто делают из керамики.

После камеры сгорания горящая топливо-воздушная смесь направляется непосредственно в турбину.

Турбина состоит из сотен лопаток, на которые давит реактивный поток, приводя турбину во вращение. Турбина в свою очередь вращает вал, на котором “сидят” вентиллятор и компрессор. Таким образом система замыкается и требует лишь подвода топлива и воздуха для своего функционироваия.

После турбины поток направляется в сопло. Сопло реактивного двигателя – последняя, но далеко не по значению часть реактивного двигателя. Оно формирует непосредственно реактивную струю. В сопло направляется холодный воздух, нагнетаемый вентиллятором для охлаждения внутренних деталей двигателя. Этот поток ограничивает манжету сопла от сверхгорячего реактивного потока и ее дает ей расплавится.

Принцип работы турбовентиляторного двигателя

Турбовентиляторный двигатель технологически очень сложное изделие, но работающее по довольно простому и понятному принципу. Расскажем, о его устройстве и какие процессы и как в нём протекают. Сначала разберёмся с терминами. Слово турбовентиляторный произошло от английского turbofan, причём англоязычный мир имеет под словом turbofan абсолютно любой двухконтурный турбореактивный двигатель.

При этом они разделяют их с низкой и высокой степенью двухконтурности соответственно, а степень двухконтурности – это параметр, который показывает отношение расхода массы воздуха через внешний контур к расходу во внутреннем. Итак, неотъемлемое свойство турбовентиляторного двигателя высокая степень двухконтурности – для современных изделий от 4 и выше.

Чтобы как можно больше воздуха расходовать через внешний контур используется вентилятор большого диаметра, энергия для его вращения появляется за счёт работы внутреннего контура и в этом заключается суть работы турбовентиляторного двигателя, где с помощью вентилятора создаётся около 80% всей тяги.

Рассмотрим типичное устройство и как это работает. Турбовентиляторный двигатель имеет внешний и внутренний контуры. На входе в двигатель имеется вентилятор большого диаметра, который подаёт воздух в оба контура, устройство внутреннего контура подобно обычному турбореактивному двигателю, который состоит из компрессора, турбины, камеры сгорания и реактивного сопла.

Сначала воздух, немного увеличив давление, после вентилятора попадает в компрессор низкого давления, затем он попадает в компрессор высокого давления, который вращается в несколько раз быстрее. После прохождения обоих компрессоров, воздух, сжатый более чем в 30 раз и сильно нагретый от высокого давления попадает в камеру сгорания. Здесь он смешивается с топливом, которое подаётся с помощью форсунок и поджигается. Далее раскалённый газ с температурой около 1600 градусов и выше начинает совершать полезную работу.

Сначала он попадает в турбину высокого давления, которая заставляет вращаться, находящийся с ней на одном валу компрессор высокого давления. Затем, потратив часть энергии и снизив свою температуру, раскаленный газ попадает в турбину низкого давления, которая находится на одном валу с компрессором и вентилятором. Потеряв большую часть энергии, раскалённый газ попадает в сопло и совершает последнее полезное действие – создаёт реактивную тягу. Таков принцип работы внутреннего контура, который создаёт лишь 20% всей тяги вентиляторного двигателя.

Принцип работы внешнего контура. Турбина низкого давления, находящаяся на одном валу с вентилятором, заставляет его вращаться, воздух, пройдя через лопатки вентилятора и немного увеличив своё давление, проходит через спрямляющий аппарат, его неподвижные лопатки поворачивают поток воздуха в осевом направлении, заодно повышая его давление. Затем воздушный поток попадает в сопло, где создаётся реактивная тяга.

Вот и весь принцип работы вентиляторного двигателя. Разумеется, каждый конкретный двигатель имеет свои особенности и различия, больше всего они касаются устройства внутреннего контура, но схема исполнения всегда остаётся плюс минус одинаковой. Обычно разница заключается в количестве ступеней компрессора и турбины, также помимо двухвальной схемы используется и трёхвальная, когда вентилятор и компрессор низкого давления больше не связаны, в таком случае используется промежуточная турбина, которая вращает только компрессор низкого давления на отдельном валу.

Ещё один способ увеличения эффективности конструкции – это установка редуктора на валу, который соединяет турбину низкого давления и вентилятор, такое решение позволяет им работать на оптимальных для себя режимах. Устройство внешнего контура также может иметь заметные отличия. При относительно небольшой степени двухконтурности в двигателе может использоваться смешение потоков, где газ из обоих контуров попадает в единую камеру сгорания и покидает через общее сопло.

Но, такая схема не подходит для более габаритных двигателей с высокой степенью двухконтурности, так как масса двигателя значительно вырастет, поэтому практически во всех вентиляторных двигателях потоки не смешиваются и длина внешнего контура всегда меньше внутреннего. Вот собственно и всё – таков принцип и способы повышения эффективности работы турбовентиляторного двигателя.

Источник

Блок танк

Турбореактивный двигатель — плюсы и минусы

Какой в 2021 году будет зарплата у контрактников служащих в российской армии

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector