Нейтронное оружие: характеристики и легенды

Конструкция

Нейтронная бомба

Нейтронный заряд конструктивно представляет собой обычный ядерный заряд малой мощности, к которому добавлен блок, содержащий изотоп бериллия как источник быстрых нейтронов. При подрыве взрывается основной ядерный заряд, энергия которого используется для запуска термоядерной реакции. Большая часть энергии взрыва нейтронной бомбы выделяется в результате запущенной реакции синтеза. Конструкция взрывного заряда такова, что до 80 % энергии взрыва составляет энергия потока быстрых нейтронов, и только 20 % приходится на остальные поражающие факторы (ударную волну, электромагнитный импульс, световое излучение).

Нейтронная пушка

Этот подвид нейтронного оружия конструктивно представляет собой генератор направленных высокоэнергичных нейтронных пучков. Предположительно, нейтронная пушка представляет собой нейтронный генератор повышенной мощности, который может быть выполнен по реакторному или ускорительному принципу (оба принципа хорошо известны и имеют широкое применение). В «реакторном» варианте Н.П. представляет собой импульсный ядерный реактор, где выход нейтронов обеспечивается реакцией деления твердого или жидкого делящегося материала. В «ускорительном» варианте нейтроны производятся за счет «бомбардировки» водородосодержащей (следует понимать, что речь идет об изотопах водорода) мишени пучком заряженных частиц (которые можно разогнать в ускорителе). Нейтроны продуцируются за счет реакции, условно относимой к реакции синтеза. Также возможна конструкция нейтронной пушки на основе так называемой камеры плазменного фокуса.

Разработки на соседнем континенте

Несколько лет назад на просторах интернета появилась информация об экспериментальном применении оружия нового поколения в Штатах. Электромагнитные бомбы США успешно прошли тестирование. Боеприпасы локального действия доказали свою эффективность: под воздействием снаряда выходила из строя вся электроника.

Существует возможность наносить удар несколько раз подряд (например, если установить приспособление на борту ракеты, беспилотника и др.). Испытания доказали эффективность применения: за один полет было выведено 7 целей, которые размещались последовательно.

Эксперименты показали, что ракеты возможно использовать с борта истребителей и бомбардировщиков.

Кроме этого, Штаты запросили создание электромагнитных снарядов. Согласно требованиям, они должны обеспечивать разрушение средств современной связи, при этом не затрагивая человека. Специалисты указывают назначение объекта: они будут применяться для нейтрализации гражданских, а не военных целей.

Исходя из развития оборонной промышленности государств, вопрос о том, чья электромагнитная бомба круче: США или России, остается без ответа.

История создания

Впервые о создании нового оружия задумались в Германии в 1938 году, после того, как два физика Ган и Штрассман произвели расщепление атома урана искусственным путем.Годом позже началось строительство первого реактора в окрестностях Берлина, для которого было закуплено несколько тонн урановой руды.С 1939 года в связи с началом войны все работы по атомному оружию засекречиваются. Программа получает название «Урановый проект».


“Толстяк”

В 1944 году группа Гейзенберга изготовила урановые плиты для реактора. Планировалось, что эксперименты по созданию искусственной цепной реакции начнутся в начале 1945. Но из-за переноса реактора из Берлина в Хайгерлох график опытов сместился на март. Согласно проведенному эксперименту, реакция деления в установке не началась, т.к. массы урана и тяжелой воды была ниже необходимого значения (1,5т урана при потребности в 2,5т).

В апреле 1945 года Хайгерлох заняли американцы. Реактор был разобран и с оставшимся сырьем вывезен в США.В Америке атомная программа получила название «Манхэттенский проект». Его руководителем стал физик Оппенгеймер совместно с генералом Гровсом. В их группу входили также немецкие ученые Бор, Фриш, Фукс, Теллер, Блох, уехавшие или эвакуированные из Германии.

Плутониевый боезаряд, выполненный в виде авиабомбы («Толстяк») был сброшен на Нагасаки 9 августа 1945 года. Урановая бомба пушечного типа («Малыш») испытаний на полигоне в Нью-Мехико не проходила и была сброшена на Хиросиму 6 августа 1945 года.


“Малыш”

Работы над созданием своего атомного оружия в СССР начали проводиться с 1943 года. Советская разведка доложила Сталину о разработках в нацисткой Германии сверхмощного оружия, способного изменить ход войны. Также в докладе содержались сведения, что кроме Германии работы над атомной бомбой проводились и в странах союзниках.

Для ускорения работ по созданию атомного оружияразведчиками был завербован физик Фукс, участвовавший в то время в «Манхэттенском проекте». Также в Союз были вывезены ведущие немецкие физики Арденне, Штейнбек,Риль связанные с «урановым проектом» в Германии. В 1949 году на полигоне в Семипалатинской области Казахстана произошло успешное испытание советской бомбы РДС-1.

Наращивание количества урана в заряде приводит к его срабатыванию лишь только достигается критическая масса. Ученые пробовали решить данную проблему путем создания различных компоновок, разделяя уран на множество частей (в виде раскрытого апельсина) которые соединялись воедино при взрыве. Но это не позволило существенно увеличить мощность.В отличие от атомной бомбы топливо для термоядерного синтеза не имеет критической массы.

Первой предложенной конструкцией водородной бомбы стал «классический супер», разработанный Теллером в 1945 году. По сути это была та же атомная бомба, внутри которой поместили цилиндрический контейнер с дейтериевой смесью.

Ученым из СССР Сахаровым осенью 1948 года создана принципиально новая схема водородной бомбы – «слойка». В ней в качестве взрывателя использовался уран-238 вместо урана-235 (изотоп U-238 является отходом при производстве изотопа U-235), источником трития и дейтерия одновременно стал дейтрид лития.

Бомба состояла из множества слоев урана и дейтрида.Первую термоядерную бомбу РДС-37 мощностью 1,7 Мт взорвали на Семипалатинском полигоне в ноябре 1955 года. Впоследствии ее конструкция с небольшими изменениями стала классической.

Как работает нейтронная бомба — особенности ее поражающих факторов

Нейтронная бомба – это разновидность ядерного оружия, основным поражающим фактором которого является поток нейтронного излучения. Вопреки распространенному мнению, после взрыва нейтронного боеприпаса образуется и ударная волна, и световое излучение, но большая часть выделяемой энергии превращается в поток быстрых нейтронов. Нейтронная бомба относится к тактическому ядерному оружию.

Принцип действия бомбы основан на свойстве быстрых нейтронов гораздо свободнее проникать через различные преграды, по сравнению с рентгеновским излучением, альфа, бета и гамма-частицами. Например, 150 мм брони способны удержать до 90% гамма-излучения и только 20% нейтронной волны. Грубо говоря, спрятаться от проникающего излучения нейтронного боеприпаса гораздо сложнее, чем от радиации «обычной» ядерной бомбы

Именно это свойство нейтронов и привлекло внимание военных

Нейтронная бомба имеет ядерный заряд относительно небольшой мощности, а также специальный блок (его обычно изготавливают из бериллия), который и является источником нейтронного излучения. После подрыва ядерного заряда большая часть энергии взрыва преобразуется в жесткое нейтронное излучение. На остальные факторы поражения — ударная волна, световой импульс, электромагнитное излучение — приходится лишь 20% энергии.

Однако все вышесказанное всего лишь теория, практическое применение нейтронного оружия имеет некоторые особенности.

Земная атмосфера очень сильно гасит нейтронное излучение, поэтому дальность действия этого поражающего фактора не больше, чем радиус поражения ударной волны. По этой же причине нет смысла изготавливать нейтронные боеприпасы большой мощности – излучение все равно быстро затухнет. Обычно нейтронные заряды имеют мощность около 1 кТ. При его подрыве происходит поражение нейтронным излучением в радиусе 1,5 км. На дистанции до 1350 метров от эпицентра оно остается опасным для жизни человека.

Кроме того, поток нейтронов вызывает в материалах (например, в броне) наведенную радиоактивность. Если посадить в танк, попавший под действие нейтронного оружия (на дистанциях около километра от эпицентра), новый экипаж, то он получит летальную дозу радиации в течение суток.

Не соответствует действительности распространенное мнение, что нейтронная бомба не уничтожает материальные ценности. После взрыва подобного боеприпаса образуется и ударная волна, и импульс светового излучения, зона сильных разрушений от которых имеет радиус примерно в один километр.

Нейтронные боеприпасы не слишком подходят для использования в земной атмосфере, зато они могут быть весьма эффективны в космическом пространстве. Там нет воздуха, поэтому нейтроны распространяются беспрепятственно на весьма значительные расстояния. Благодаря этому различные источники нейтронного излучения рассматриваются в качестве эффективного средства противоракетной обороны. Это так называемое пучковое оружие. Правда, в качестве источника нейтронов обычно рассматривается не нейтронные ядерные бомбы, а генераторы направленных нейтронных пучков – так называемые нейтронные пушки.

Использовать их в качестве средства поражения баллистических ракет и боевых блоков предлагали еще разработчики рейгановской программы Стратегической оборонной инициативы (СОИ). При взаимодействии пучка нейтронов с материалами конструкции ракет и боеголовок возникает наведенная радиация, которая надежно выводит из строя электронику этих устройств.

После появления идеи нейтронной бомбы и начала работ по ее созданию стали разрабатываться методы защиты от нейтронного излучения. В первую очередь они были направлены на уменьшение уязвимости боевой техники и экипажа, находящегося в ней. Основным методом защиты от подобного оружия стало изготовление специальных видов брони, хорошо поглощающих нейтроны. Обычно в них добавляли бор – материал, прекрасно улавливающий эти элементарные частицы. Можно добавить, что бор входит в состав поглощающих стрежней ядерных реакторов. Еще одним способом уменьшить поток нейтронов является добавление в броневую сталь обедненного урана.

Кстати, практически вся боевая техника, созданная в 60-е – 70-е годы прошлого столетия, максимально защищена от большинства поражающих факторов ядерного взрыва.

История создания

Пример эффектов взрыва нейтронного заряда на различных расстояниях

Действие воздушного взрыва нейтронного заряда мощностью 1 кт на высоте ~ 150 м
Рассто-яние Давление Радиация Защита бетон Защита земля Примечания
0 м ~108 МПа Окончание реакции, начало разлёта вещества бомбы. Благодаря конструктивным особенностям заряда значительная часть энергии взрыва выделяется в виде нейтронного излучения.
от центра ~50 м 0,7 МПа n·105Гр ~2-2,5 м ~3-3,5 м Граница светящейся сферы диаметром ~100 м , время свечения ок. 0,2 с.
эпицентр 100 м 0,2 МПа ~35 000 Гр 1,65 м 2,3 м Эпицентр взрыва. Человек в обычном убежище — гибель или крайне тяжёлая лучевая болезнь . Разрушение убежищ, рассчитанных на 100 кПа .
170 м 0,15 МПа Сильные повреждения танков .
300 м 0,1 МПа 5000 Гр 1,32 м 1,85 м Человек в убежище — лучевая болезнь от лёгкой до тяжёлой степени .
340 м 0,07 МПа Лесные пожары .
430 м 0,03 МПа 1200 Гр 1,12 м 1,6 м Человек — «смерть под лучом». Сильные повреждения сооружений .
500 м 1000 Гр 1,09 м 1,5 м Человек гибнет от радиации сразу («под лучом») или через несколько минут.
550 м 0,028 МПа Средние повреждения сооружений .
700 м 150 Гр 0,9 м 1,15 м Гибель человека от радиации через несколько часов.
760 м ~0,02 МПа 80 Гр 0,8 м 1 м
880 м 0,014 МПа Средние повреждения деревьев .
910 м 30 Гр 0,65 м 0,7 м Человек гибнет через несколько суток; лечение — уменьшение страданий.
1000 м 20 Гр 0,6 м 0,65 м Стёкла приборов окрашиваются в тёмно-бурый цвет.
1200 м ~0,01 МПа 6,5-8,5 Гр 0,5 м 0,6 м Крайне тяжёлая лучевая болезнь; гибнут до 90 % пострадавших .
1500 м 2 Гр 0,3 м 0,45 м Средняя лучевая болезнь; гибнут до 80 % , при лечении до 50 % .
1650 м 1 Гр 0,2 м 0,3 м Лёгкая лучевая болезнь . Без лечения могут погибнуть до 50 % .
1800 м ~0,005 МПа 0,75 Гр 0,1 м Радиационные изменения в крови .
2000 м 0,15 Гр Доза может быть опасна для больного лейкемией .
Рассто-яние Давление Радиация Защита бетон Защита земля Примечания
Примечания

  1. Расстояние в первых двух строках от центра взрыва, далее расстояние от эпицентра взрыва.

  2. Избыточное давление вещества на фронте падающей ударной волны в мегапаскалях (МПа), рассчитано в соответствии с данными для взрыва мощностью 1 кт на высоте 190 м (С. 13) по формуле подобия параметров ударной волны для различных мощностей зарядов (С. 10 там же) с учётом того, что по ударной волне нейтронный боеприпас мощностью 1кт примерно эквивалентен обычному ядерному 0,5кт :R1/R2 = (q1/q2)1/3,где R1 и R2 — расстояния на которых будет наблюдаться одинаковое давление ударной волны;q1 и q2 — мощности сопоставляемых зарядов.

  3. Суммарное значения доз радиации нейтронов и гамма-лучей в греях (Гр).

  4. Защита отдельно из обычного плотного бетона или из сухой земли; имеется в виду слой вещества в перекрытии заглублённого бетонного или деревоземляного сооружения, необходимый для снижения внешней дозы радиации до считающейся приемлемой в убежище дозы в 50 Рентген = 0,5 Гр.
При составлении таблицы использовалась литература:
1. Безопасность жизнедеятельности. Защита населения и территорий в чрезвычайных ситуациях : учебное пособие для сотруд. высш. учеб. заведений /  — М.: Изд. центр «Академия», 2007. — С. 133—138. — ISBN 978-5-7695-3392-1.
2. Большая Советская Энциклопедия. — 3-е изд. — М.: «Советская Энциклопедия», 1978. — Т. 30.
3. Действие ядерного оружия. Пер. с англ. — М.: Воениздат, 1965.
4. Иванов, Г. Нейтронное оружие // Зарубежное военное обозрение. — 1982. — № 12. — С. 50 — 54.
5. Защита от оружия массового поражения. — М.: Воениздат, 1989.
6. Козлов, В. Ф. Справочник по радиационной безопасности. — М., 1987.
7. Миргородский, В. Р. Безопасность жизнедеятельности : курс лекций / под ред. Н. Н. Пахомова. — М.: Изд-во МГУП, 2001. — Раздел III. Защита объектов печати в чрезвычайных ситуациях.
8. Убежища гражданской обороны. Конструкции и расчёт / В. А. Котляревский, В. И. Ганушкин, А. А. Костин и др.; под ред. В. А. Котляревского. — М.: Стройиздат, 1989. — ISBN 5-274-00515-2.

Пример эффектов взрыва нейтронного заряда на различных расстояниях

Действие воздушного взрыва нейтронного заряда мощностью 1 кт на высоте ~ 150 м
Рассто-яние Давление Радиация Защита бетон Защита земля Примечания
0 м ~108 МПа Окончание реакции, начало разлёта вещества бомбы. Благодаря конструктивным особенностям заряда значительная часть энергии взрыва выделяется в виде нейтронного излучения.
от центра ~50 м 0,7 МПа n·105Гр ~2-2,5 м ~3-3,5 м Граница светящейся сферы диаметром ~100 м , время свечения ок. 0,2 с.
эпицентр 100 м 0,2 МПа ~35 000 Гр 1,65 м 2,3 м Эпицентр взрыва. Человек в обычном убежище — гибель или крайне тяжёлая лучевая болезнь . Разрушение убежищ, рассчитанных на 100 кПа .
170 м 0,15 МПа Сильные повреждения танков .
300 м 0,1 МПа 5000 Гр 1,32 м 1,85 м Человек в убежище — лучевая болезнь от лёгкой до тяжёлой степени .
340 м 0,07 МПа Лесные пожары .
430 м 0,03 МПа 1200 Гр 1,12 м 1,6 м Человек — «смерть под лучом». Сильные повреждения сооружений .
500 м 1000 Гр 1,09 м 1,5 м Человек гибнет от радиации сразу («под лучом») или через несколько минут.
550 м 0,028 МПа Средние повреждения сооружений .
700 м 150 Гр 0,9 м 1,15 м Гибель человека от радиации через несколько часов.
760 м ~0,02 МПа 80 Гр 0,8 м 1 м
880 м 0,014 МПа Средние повреждения деревьев .
910 м 30 Гр 0,65 м 0,7 м Человек гибнет через несколько суток; лечение — уменьшение страданий.
1000 м 20 Гр 0,6 м 0,65 м Стёкла приборов окрашиваются в тёмно-бурый цвет.
1200 м ~0,01 МПа 6,5-8,5 Гр 0,5 м 0,6 м Крайне тяжёлая лучевая болезнь; гибнут до 90 % пострадавших .
1500 м 2 Гр 0,3 м 0,45 м Средняя лучевая болезнь; гибнут до 80 % , при лечении до 50 % .
1650 м 1 Гр 0,2 м 0,3 м Лёгкая лучевая болезнь . Без лечения могут погибнуть до 50 % .
1800 м ~0,005 МПа 0,75 Гр 0,1 м Радиационные изменения в крови .
2000 м 0,15 Гр Доза может быть опасна для больного лейкемией .
Рассто-яние Давление Радиация Защита бетон Защита земля Примечания
Примечания

  1. Расстояние в первых двух строках от центра взрыва, далее расстояние от эпицентра взрыва.

  2. Избыточное давление вещества на фронте падающей ударной волны в мегапаскалях (МПа), рассчитано в соответствии с данными для взрыва мощностью 1 кт на высоте 190 м (С. 13) по формуле подобия параметров ударной волны для различных мощностей зарядов (С. 10 там же) с учётом того, что по ударной волне нейтронный боеприпас мощностью 1кт примерно эквивалентен обычному ядерному 0,5кт :R1/R2 = (q1/q2)1/3,где R1 и R2 — расстояния на которых будет наблюдаться одинаковое давление ударной волны;q1 и q2 — мощности сопоставляемых зарядов.

  3. Суммарное значения доз радиации нейтронов и гамма-лучей в греях (Гр).

  4. Защита отдельно из обычного плотного бетона или из сухой земли; имеется в виду слой вещества в перекрытии заглублённого бетонного или деревоземляного сооружения, необходимый для снижения внешней дозы радиации до считающейся приемлемой в убежище дозы в 50 Рентген = 0,5 Гр.
При составлении таблицы использовалась литература:
1. Безопасность жизнедеятельности. Защита населения и территорий в чрезвычайных ситуациях : учебное пособие для сотруд. высш. учеб. заведений /  — М.: Изд. центр «Академия», 2007. — С. 133—138. — ISBN 978-5-7695-3392-1.
2. Большая Советская Энциклопедия. — 3-е изд. — М.: «Советская Энциклопедия», 1978. — Т. 30.
3. Действие ядерного оружия. Пер. с англ. — М.: Воениздат, 1965.
4. Иванов, Г. Нейтронное оружие // Зарубежное военное обозрение. — 1982. — № 12. — С. 50 — 54.
5. Защита от оружия массового поражения. — М.: Воениздат, 1989.
6. Козлов, В. Ф. Справочник по радиационной безопасности. — М., 1987.
7. Миргородский, В. Р. Безопасность жизнедеятельности : курс лекций / под ред. Н. Н. Пахомова. — М.: Изд-во МГУП, 2001. — Раздел III. Защита объектов печати в чрезвычайных ситуациях.
8. Убежища гражданской обороны. Конструкции и расчёт / В. А. Котляревский, В. И. Ганушкин, А. А. Костин и др.; под ред. В. А. Котляревского. — М.: Стройиздат, 1989. — ISBN 5-274-00515-2.

Универсальное российское шасси ГАЗ-3308

Конструкция

Строение ядерной бомбы

В качестве прототипа мной была взята плутониевая бомба “Толстяк” (рис.2.) сброшенная 9 августа 1945 года на японский город Нагасаки.

Рисунок 2 – Атомная бомба “Толстяк”

Схема этой бомбы (типичная для плутониевых однофазных боеприпасов) примерно следующая:

1. Нейтронный инициатор – шар диаметром порядка 2 см из бериллия, покрытый тонким слоем сплава иттрий-полоний или металлического полония-210 – первичный источник нейтронов для резкого снижения критической массы и ускорения начала реакции. Срабатывает в момент перевода боевого ядра в закритическое состояние (при сжатии происходит смешение полония и бериллия с выбросом большого количества нейтронов). В настоящее время помимо данного типа инициирования, больше распространено термоядерное инициирование (ТИ). Термоядерный инициатор (ТИ). Находится в центре заряда (подобно НИ) где размещается небольшое количество термоядерного материала, центр которого нагревается сходящейся ударной волной и в процессе термоядерной реакции на фоне возникших температур нарабатывается значимое количество нейтронов, достаточное для нейтронного инициирования цепной реакции (рис.3.).

2. Плутоний. Используют максимально чистый изотоп плутоний-239, хотя для увеличения стабильности физических свойств (плотности) и улучшения сжимаемости заряда плутоний легируется небольшим количеством галлия.

3. Оболочка (обычно из урана), служащая отражателем нейтронов.

4. Обжимающая оболочка из алюминия. Обеспечивает бомльшую равномерность обжима ударной волной, в то же время предохраняя внутренние части заряда от непосредственного контакта со взрывчаткой и раскалёнными продуктами её разложения.

5. Взрывчатое вещество со сложной системой подрыва, обеспечивающей синхронность подрыва всего взрывчатого вещества. Синхронность необходима для создания строго сферической сжимающей (направленной внутрь шара) ударной волны. Несферическая волна приводит к выбросу материала шара через неоднородность и невозможность создания критической массы. Создание подобной системы расположения взрывчатки и подрыва являлось в своё время одной из наиболее трудных задач. Используется комбинированная схема (система линз) из “быстрой” и “медленной” взрывчаток.

6. Корпус, изготовленный из дюралевых штампованных элементов – две сферических крышки и пояс, соединяемые болтами.

Рисунок 3. – Принцип действия плутониевой бомбы

Нейтронное оружие и политика

Примечания

Что такое реакция слияния ядер?

Топливом для реакции термоядерного синтеза служат изотопы водорода дейтерий или тритий. Первый отличается от обычного водорода тем, что в его ядре, кроме одного протона содержится еще и нейтрон, а в ядре трития уже два нейтрона. В природной воде один атом дейтерия приходится на 7000 атомов водорода, но из его количества. содержащегося в стакане воды, можно в результате термоядерной реакции получить такое же количество теплоты, как и при сгорании 200 л бензина. На встрече в 1946 году с политиками, отец американской водородной бомбы Эдвард Теллер подчеркнул, что дейтерий дает больше энергии на грамм веса, чем уран или плутоний, однако стоит двадцать центов за грамм в сравнении с несколькими сотнями долларов за грамм топлива для ядерного деления. Тритий в природе в свободном состоянии вообще не встречается, поэтому он гораздо дороже, чем дейтерий, с рыночной ценой в десятки тысяч долларов за грамм, однако наибольшее количество энергии высвобождается именно в реакции слияния ядер дейтерия и трития, при которой образуется ядро атома гелия и высвобождается нейтрон, уносящий избыточную энергию в 17,59 МэВ

D + T → 4Не + n + 17,59 МэВ.

Схематически эта реакция показана на рисунке ниже.


66

История создания нейтронной бомбы

Атомные бомбы, взорванные американцами над Хиросимой и Нагасаки, принято относить к первому поколению ядерного оружия. Принцип его работы основан на реакции делений ядер урана или плутония. Ко второму поколению относится оружие, в принцип работы которого положены реакции ядерного синтеза – это термоядерные боеприпасы, первое из них было взорвано США в 1952 году.

К ядерному оружию третьего поколения относятся боеприпасы, после взрыва которых, энергия направляется на усиление того или иного фактора поражения. Именно к таким боеприпасам относятся нейтронные бомбы.

Впервые о создании нейтронной бомбы заговорили в середине 60-х годов, хотя, его теоретическое обоснование обсуждалось гораздо раньше – еще в середине 40-х годов. Считается, что идея создания подобного оружия принадлежит американскому физику Самуэлю Коену. Тактическое ядерное оружие, несмотря на его значительную мощь, не слишком эффективно против бронетехники, броня хорошо защищала экипаж практически от всех поражающих факторов ЯО.

Первое испытание нейтронного боевого устройства было проведено в США в 1963 году. Однако мощность излучения оказалась гораздо ниже той, на которую рассчитывали военные. На доводку нового оружия потребовалось более десяти лет: в 1976 году американцы провели очередные испытания нейтронного заряда, результаты которого оказались весьма впечатляющими. После этого было принято решение о создании 203-мм снарядов с нейтронной боевой частью и боеголовок для тактических баллистических ракет «Ланс».

В настоящее время технологиями, которые позволяют создавать нейтронное оружие, владеют США, Россия и Китай (возможно, Франция). Некоторые источники сообщают, что массовый выпуск подобных боеприпасов продолжался примерно до середины 80-х годов прошлого века. В этот момент в броню боевой техники стали повсеместно добавлять бор и обедненный уран, что практически полностью нейтрализовало основной поражающий фактор нейтронных боеприпасов. Это привело к постепенному отказу от этого вида оружия. Хотя, как обстоит ситуация на самом деле — неизвестно. Информация такого рода находится под многими грифами секретности и практически не доступна широкой общественности.

Пример эффектов взрыва нейтронного заряда на различных расстояниях

Действие воздушного взрыва нейтронного заряда мощностью 1 кт на высоте ~ 150 м
Рассто- яние Давление Радиация Защита бетон Защита земля Примечания
0 м ~108 МПа Окончание реакции, начало разлёта вещества бомбы. Благодаря конструктивным особенностям заряда значительная часть энергии взрыва выделяется в виде нейтронного излучения.
от центра ~50 м 0,7 МПа n·105 ~2-2,5 м ~3-3,5 м Граница светящейся сферы диаметром ~100 м , время свечения ок. 0,2 с.
эпицентр 100 м 0,2 МПа ~35 000 Гр 1,65 м 2,3 м Эпицентр взрыва. Человек в обычном убежище — гибель или крайне тяжёлая лучевая болезнь . Разрушение убежищ, рассчитанных на 100 кПа .
170 м 0,15 МПа Сильные повреждения танков .
300 м 0,1 МПа 5000 Гр 1,32 м 1,85 м Человек в убежище — лучевая болезнь от лёгкой до тяжёлой степени .
340 м 0,07 МПа Лесные пожары .
430 м 0,03 МПа 1200 Гр 1,12 м 1,6 м Человек — «смерть под лучом». Сильные повреждения сооружений .
500 м 1000 Гр 1,09 м 1,5 м Человек гибнет от радиации сразу («под лучом») или через несколько минут.
550 м 0,028 МПа Средние повреждения сооружений .
700 м 150 Гр 0,9 м 1,15 м Гибель человека от радиации через несколько часов.
760 м ~0,02 МПа 80 Гр 0,8 м 1 м
880 м 0,014 МПа Средние повреждения деревьев .
910 м 30 Гр 0,65 м 0,7 м Человек гибнет через несколько суток; лечение — уменьшение страданий.
1000 м 20 Гр 0,6 м 0,65 м Стёкла приборов окрашиваются в тёмно-бурый цвет.
1200 м ~0,01 МПа 6,5-8,5 Гр 0,5 м 0,6 м Крайне тяжёлая лучевая болезнь; гибнут до 90 % пострадавших .
1500 м 2 Гр 0,3 м 0,45 м Средняя лучевая болезнь; гибнут до 80 % , при лечении до 50 % .
1650 м 1 Гр 0,2 м 0,3 м Лёгкая лучевая болезнь . Без лечения могут погибнуть до 50 % .
1800 м ~0,005 МПа 0,75 Гр 0,1 м Радиационные изменения в крови .
2000 м 0,15 Гр Доза может быть опасна для больного лейкемией .
Рассто- яние Давление Радиация Защита бетон Защита земля Примечания
Примечания

  1. 12 Расстояние в первых двух строках от центра взрыва, далее расстояние от эпицентра взрыва.
  2. 12 Избыточное давление вещества на фронте падающей ударной волны в мегапаскалях (МПа), рассчитано в соответствии с данными для взрыва мощностью 1 кт на высоте 190 м (С. 13) по формуле подобия параметров ударной волны для различных мощностей зарядов (С. 10 там же) с учётом того, что по ударной волне нейтронный боеприпас мощностью 1кт примерно эквивалентен обычному ядерному 0,5кт : R1/R2 = (q1/q2)1/3, где R1 и R2 — расстояния на которых будет наблюдаться одинаковое давление ударной волны; q1 и q2 — мощности сопоставляемых зарядов.
  3. 12 Суммарное значения доз радиации нейтронов и гамма-лучей в греях (Гр).
  4. 1234 Защита отдельно из обычного плотного бетона или из сухой земли; имеется в виду слой вещества в перекрытии заглублённого бетонного или деревоземляного сооружения, необходимый для снижения внешней дозы радиации до считающейся приемлемой в убежище дозы в 50 Рентген = 0,5 Гр.

При составлении таблицы использовалась литература: 1. Безопасность жизнедеятельности. Защита населения и территорий в чрезвычайных ситуациях : учебное пособие для сотруд. высш. учеб. заведений / — М.: Изд. , 2007. — С. 133—138. — ISBN 978-5-7695-3392-1. 2. Большая Советская Энциклопедия. — 3-е изд. — М.: «Советская Энциклопедия», 1978. — Т. 30. 3. Действие ядерного оружия. Пер. с англ. — М.: Воениздат, 1965. 4. Иванов, Г. Нейтронное оружие // Зарубежное военное обозрение. — 1982. — № 12. — С. 50 — 54. 5. Защита от оружия массового поражения. — М.: Воениздат, 1989. 6. Козлов, В. Ф. Справочник по радиационной безопасности. — М., 1987. 7. Миргородский, В. Р. Безопасность жизнедеятельности : курс лекций / под ред. Н. Н. Пахомова. — М.: Изд-во МГУП, 2001. — Раздел III. Защита объектов печати в чрезвычайных ситуациях. 8. Убежища гражданской обороны. Конструкции и расчёт / В. А. Котляревский, В. И. Ганушкин, А. А. Костин и др.; под ред. В. А. Котляревского. — М.: Стройиздат, 1989. — ISBN 5-274-00515-2.

Немирный атом Игоря Курчатова

Сегодня каждый школьник сможет ответить на вопрос о том, кто изобрёл атомную бомбу в Советском Союзе. А тогда, в начале 30-х годов прошлого столетия, этого не знал никто.

В 1932 году академик Игорь Васильевич Курчатов одним из первых в мире начинает изучение атомного ядра. Собрав вокруг себя единомышленников, Игорь Васильевич в 1937 году создаёт первый в Европе циклотрон. В этом же году он со своими единомышленниками создаёт и первые искусственные ядра.

Целевым направлением этого центра было серьёзное исследование и создание ядерного оружия. Теперь становится очевидным, кто создал атомную бомбу в Советском Союзе. В его команде тогда было всего лишь десять человек.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector