Кувалда для америки. как ссср создал первую атомную бомбу

Деление урана

1931 год был отмечен важным открытием. Во время бомбардировки бериллия альфа-частицами было обнаружено новое, весьма мощное излучение. Фредерик Жолио и Ирэн Жолио-Кюри пропустили это излучение через парафин и заметили, что на пути неизвестных лучей возникают протоны, то есть положительно заряженные частицы, входящие в состав атомного ядра.

Британский ученый Джеймс Чедвик, поддерживаемый Резерфордом, провел в лаборатории Кавендиша эксперимент, раскрывший истинную природу излучения бериллия: это оказался поток частиц, обладавших массой протона, но не имевших электрического заряда. Открытие нейтрона — так назвали новую элементарную частицу — завершило модель атома Резерфорда—Бора и привело к открытию новых путей исследования атомного ядра и осуществления реакций ядерного превращения. При наблюдении ядерной реакции урана обнаружилось, что его ядро после столкновения с нейтроном распадалось на два более легких ядра, которые соответствовали весьма далеким от урана химическим элементам.

Явление эмиссии нейтронов натолкнуло многих физиков на мысль, что если деление первого ядра, находящегося где-то в толще урана, может создать несколько нейтронов, каждый из которых вызовет деление другого ядра, то каждое из ядер, подвергнувшихся такому делению, также выделит нейтроны, и так далее. Возникает цепная реакция. Ядерная энергия предстала как источник энергии, несравненно превосходящий по запасам все другие известные к тому времени виды энергии. И эта энергия может быть использована в военных целях.

 Оппенгеймер сразу же попытался подсчитать критическую массу урана, необходимую для возникновения ядерной реакции. И в течение последующих двух лет преподавательской работы он не переставал думать об атомной проблеме

Оппенгеймер сразу же попытался подсчитать критическую массу урана, необходимую для возникновения ядерной реакции. И в течение последующих двух лет преподавательской работы он не переставал думать об атомной проблеме.

Надвигалась Вторая мировая война

Лео Сциллард, венгерский физик, эмигрировавший в США, уговорил Эйнштейна обратить внимание американского правительства на опасность, которая будет угрожать человечеству, если нацистам удастся изготовить ядерную бомбу. И 6 декабря 1941 года Белый дом принял решение ассигновать большие средства на разработку и изготовление ядерного оружия.

Осенью 1941-го лауреат Нобелевской премии Артур Комптон пригласил Оппенгеймера принять участие в работе специальной комиссии Национальной академии наук, которая в течение двух дней обсуждала проблемы использования атомной энергии в военных целях. И Оппенгеймер взял на себя руководство группой теоретической физики, которая упорно продолжала искать наилучшую модель ядерной бомбы.

Когда Соединенные Штаты вступили в войну, обстановка потребовала решительных действий. Перспектива создания атомной бомбы прояснялась с каждым днем, и та из воюющих сторон, которая первой стала бы обладательницей такой бомбы, могла быть уверена в своей полной победе.

 Оппенгеймер мечтал собрать всех специалистов в одной лаборатории, в одном центре, где специалисты всех отраслей работали бы над созданием атомной бомбы под единым руководством

В августе 1942 года в результате соглашения с английским правительством американской армии было официально поручено организовать совместную работу английских и американских ученых-атомщиков над использованием атомной энергии в военных целях, и все исследовательские группы стали работать по одному плану, получившему название «Манхэттенский проект».

Оппенгеймер мечтал собрать всех специалистов в одной лаборатории, в одном центре, где специалисты всех отраслей работали бы над созданием атомной бомбы под единым руководством.

Оппенгеймер убедил в этом Комптона и руководителей армии. А осенью 1942 года генерал Гровс, начальник Манхэттенского проекта, предложил ему лично возглавить эту единую лабораторию.

Атомное оружие

АТОМНОЕ ОРУЖИЕ, устройство, получающее огромную взрывную мощность от реакций ДЕЛЕНИЯ АТОМНОГО ЯДРА и ЯДЕРНОГО СИНТЕЗА. Первое ядерное оружие было применено Соединенными Штатами против японских городов Хиросимы и Нагасаки в августе 1945 г. Эти атомные бомбы состояли из двух стабильных доктритических масс УРАНА и ПЛУТОНИЯ, которые при сильном сталкивании вызвали превышение КРИТИЧЕСКОЙ МАССЫ, тем самым провоцируя бесконтрольную ЦЕПНУЮ РЕАКЦИЮ деления атомных ядер. При таких взрывах высвобождается огромное количество энергии и губительной радиации: взрывная мощность может равняться мощности 200 000 тонн тринитротолуола. Гораздо более мощная водородная бомба (термоядерная бомба), впервые испытанная в 1952 г., состоит из атомной бомбы, которая во время взрыва создает температуру, достаточно высокую для того, чтобы вызвать ядерный синтез в близлежащем твердом слое, обычно — в детеррите лития. Взрывная мощность может равняться мощности нескольких миллионов тонн (мегатонн) тринитротолуола. Площадь поражения, вызванного такими бомбами, достигает больших размеров: 15 мегатонная бомба взорвет все горящие вещества в пределах 20 км. Третий тип ядерного оружия, нейтронная бомба, является небольшой водородной бомбой, называемой также оружием повышенной радиации. Она вызывает слабый взрыв, который, однако, сопровождается интенсивным выбросом высокоскоростных НЕЙТРОНОВ. Слабость взрыв означает то, что здания повреждаются не сильно. Нейтроны же вызывают серьезную лучевую болезнь у людей, находящихся в пределах определенного радиуса от места взрыва, и убивают всех пораженных в течении недели.

Вначале взрыв атомной бомбы (А) образует огненный шар (1) с температурой и миллионы градусов по Цельсию и испускает радиационное излучение (?) Через несколько минут (В) шар увеличивается в обьеме и создав!ударную волну с высоким давлением (3). Огненный шар поднимается (С), всасывая пыль и обломки, и образует грибовидное облако (D), По мере увеличения в обьеме огненный шар создает мощное конвекционное течение (4), выделяя горячее излучение (5) и образуя облако (6), При взрыве 15 мегатонной бомбы разрушение от взрывной волны являются полным (7) в радиусе 8 км, серьезными (8) в радиусе 15км и заметными (Я) в радиусе 30 км Даже на расстоянии 20 км (10) взрываются все легковоспламеняющиеся вещества, В течение двух дней после взрыва бомбы на расстоянии 300 км от взрыва продолжается выпадение осадков с радиоактивной дозой в 300 рентген Прилагаемая фотография показывает, как взрыв крупного ядерного оружия на земле создает огромное грибовидное облако радиоактивной пыли и обломков, которое может достигать высоты нескольких километров. Опасная пыль, находящаяся в воздухе, свободно переносится затем преобладающими ветрами в любом направлении Опустошение покрывает огромную территорию.

Тем временем за океаном

Параллельно с немцами (лишь с небольшим отставанием) разработками атомного оружия занялись в Англии и в США. Начало им положило письмо, направленное в сентябре 1939 года Альбертом Эйнштейном президенту США Франклину Рузвельту. Инициаторами письма и авторами большей части текста были физики-эмигранты из Венгрии Лео Силард, Юджин Вигнер и Эдвард Теллер

Письмо обращало внимание президента на то, что нацистская Германия ведет активные исследования, в результате которых может вскоре обзавестись атомной бомбой

В СССР первые сведения о работах, проводимых как союзниками, так и противником, были доложены Сталину разведкой еще в 1943 году. Сразу же было принято решение о развертывании подобных работ в Союзе. Так начался советский атомный проект. Задания получили не только ученые, но и разведчики, для которых добыча ядерных секретов стала сверхзадачей.

Ценнейшие сведения о работе над атомной бомбой в США, добытые разведкой, очень помогли продвижению советского ядерного проекта. Участвовавшие в нем ученые сумели избежать тупиковых путей поиска, тем самым существенно ускорив достижение конечной цели.

История

Создание атомной бомбы в СССР

Впервые серия заявок на получение авторских свидетельств на изобретение (патенты) атомной бомбы была подана в 1940 году сотрудниками Харьковского физико-технического института Ф. Ланге, В. Шпинелем и В. Масловым. Авторы рассматривали вопросы и предлагали решения по обогащению урана и использованию его как взрывчатого вещества. Предложенная бомба имела классическую схему подрыва (пушечного типа), которая в дальнейшем, с некоторыми изменениями, использовалась для инициализации ядерного взрыва в американских ядерных бомбах на основе урана.

Начавшаяся Великая Отечественная война замедлила теоретические и экспериментальные исследования в области ядерной физики, а крупнейшие центры (Харьковский физико-технический институт и Радиевый институт – Ленинград) прекратили свою деятельность и частично были эвакуированы.

Начиная с сентября 1941 года, разведывательные органы НКВД и Главного разведуправления Красной Армии стали получать все возрастающее количество информации об особом интересе, проявляемом в военных кругах Великобритании к созданию взрывчатых веществ на основе делящихся изотопов. В мае 1942 года Главное разведуправление, обобщив полученные материалы, доложило Государственному комитету обороны (ГКО) о военном назначении проводимых ядерных исследований.

Примерно в это же время техник-лейтенант Георгий Николаевич Флёров, который в 1940 году был одним из открывателей спонтанного деления ядер урана, пишет письмо лично И.В. Сталину

В своем послании будущий академик, один из создателей советского ядерного оружия, обращает внимание на то, что из научной печати Германии, Великобритании и Соединенных Штатов исчезли публикации о работах, связанных с делением атомного ядра. По мнению ученого, это может свидетельствовать о переориентации «чистой» науки в практическую военную область

В октябре – ноябре 1942 года внешняя разведка НКВД докладывает Л.П. Берии всю имеющуюся информацию о работах в области ядерных исследований, добытую разведчиками-нелегалами в Англии и США, на основании которой нарком пишет докладную записку руководителю государства.

В конце сентября 1942 года И.В. Сталин подписывает постановление Государственного комитета обороны о возобновлении и интенсификации «работ по урану», а в феврале 1943 года после изучения материалов, представленных Л.П. Берией, принимается решение о переводе всех исследований по созданию ядерного оружия (атомной бомбы) в «практическое русло». Общее руководство и координация всех видов работ были возложены на заместителя Председателя ГКО В.М. Молотова, научное руководство проектом поручалось И.В. Курчатову. Руководство работами по поиску месторождений и добыче урановой руды было возложено на А.П. Завенягина, за создание предприятий по обогащению урана и производству тяжелой воды отвечал М.Г. Первухин, а Народному Комиссару цветной металлургии П.Ф. Ломако «доверялось» к 1944 году накопить 0,5 тонны металлического (обогащенного до необходимых кондиций) урана.

На этом первый этап (сроки исполнения которого были сорваны), предусматривающий создание атомной бомбы в СССР, был закончен.

После того, как США сбросили атомные бомбы на японские города, руководство СССР воочию увидело отставание научных исследований и практических работ по созданию ядерного оружия от своих конкурентов. Для интенсификации и создания атомной бомбы в максимально короткие сроки 20 августа 1945 года выходит специальное постановление ГКО о создании Спецкомитета №1, в функции которого входила организация и координация всех видов работ по созданию ядерной бомбы. Руководителем этого чрезвычайного органа с неограниченными полномочиями назначается Л.П. Берия, научное руководство поручается И.В. Курчатову. Непосредственно управление всеми научно-исследовательскими, проектно-конструкторскими и производственными предприятиями должен был осуществлять нарком вооружений Б.Л. Ванников.

Благодаря оптимизации всех видов работ и жесткому контролю за ними со стороны Л.П. Берии, который, однако, не препятствовал творческому развитию заложенных в проекты идей, в июле 1946 года были разработаны технические задания на создание первых двух советских атомных бомб:

  • «РДС — 1» — бомба с плутониевым зарядом, подрыв которого осуществлялся по имплозивному типу;
  • «РДС — 2» — бомба с пушечным подрывом уранового заряда.

Научным руководителем работ по созданию обоих типов ядерного оружия был назначен И.В. Курчатов.

Что такое реакция слияния ядер?

Топливом для реакции термоядерного синтеза служат изотопы водорода дейтерий или тритий. Первый отличается от обычного водорода тем, что в его ядре, кроме одного протона содержится еще и нейтрон, а в ядре трития уже два нейтрона. В природной воде один атом дейтерия приходится на 7000 атомов водорода, но из его количества. содержащегося в стакане воды, можно в результате термоядерной реакции получить такое же количество теплоты, как и при сгорании 200 л бензина. На встрече в 1946 году с политиками, отец американской водородной бомбы Эдвард Теллер подчеркнул, что дейтерий дает больше энергии на грамм веса, чем уран или плутоний, однако стоит двадцать центов за грамм в сравнении с несколькими сотнями долларов за грамм топлива для ядерного деления. Тритий в природе в свободном состоянии вообще не встречается, поэтому он гораздо дороже, чем дейтерий, с рыночной ценой в десятки тысяч долларов за грамм, однако наибольшее количество энергии высвобождается именно в реакции слияния ядер дейтерия и трития, при которой образуется ядро атома гелия и высвобождается нейтрон, уносящий избыточную энергию в 17,59 МэВ

D + T → 4 Не + n + 17,59 МэВ.

Схематически эта реакция показана на рисунке ниже.

Много это или мало? Как известно, все познается в сравнении. Так вот, энергия в 1 МэВ примерно в 2,3 миллиона раз больше, чем выделяется при сгорании 1 кг нефти. Следовательно слияние только двух ядер дейтерия и трития высвобождает столько энергии, сколько выделяется при сгорании 2,3∙10 6 ∙17,59 = 40,5∙10 6 кг нефти. А ведь речь идет только о двух атомах. Можете представить, как высоки были ставки во второй половине 40-х годов прошлого века, когда в США и СССР развернулись работы, результатом которых стала термоядерная бомба.

Вахтовый автобус Урал М (Урал 3255) – цена от 4 520 000 рублей (2021 г.)

О самом убойном пневмате

Судя по многочисленным отзывам, большой популярностью у потребителей пользуются стрелковые единицы, работающие на сжатом воздухе. Потенциальных покупателей очень часто интересует вопрос, какой духовой пистолет самый мощный? Преимущественно такие модели используются для развлекательной и спортивной стрельбы. Как утверждают специалисты, из всех имеющихся на оружейных прилавках пневматических пистолетов самым мощным считается Borner Sport 306m.

На корпусе имеется маркировка m, что свидетельствует о том, что пистолет является полностью металлическим, за счет чего он практически не отличается от настоящего огнестрела. Данный факт по достоинству оценен многими любителями пневматов. BORNER Sport 306m рекомендуется для тех, кому нравится массивное и увесистое оружие. Духовая модель обладает следующими характеристиками:

  • Пистолет относится к категории пневматов газобаллонного типа.
  • Модель калибра 4,5 мм.
  • Вес пистолета составляет 950 г.
  • Стрельба ведется специальными шариками ВВ.
  • Оружие оснащено гладким стволом длиной 115 мм.
  • Пистолет оборудован 12-граммовым баллоном с СО2.
  • Показатель дульной энергии не превышает 3 Дж.
  • Общая длина духового оружия 215 мм.
  • Емкость магазина рассчитана на 18 шариков.
  • Покидает ствольный канал снаряд с начальной скоростью 150 м/с.
  • Пистолет черного цвета.
  • Продается под брендом Borner.

Звук взрыва ядерной бомбы можно услышать на видео, снятом Gizmodo в Тихом океане

Схема «Слойка»

Первая в мире настоящая водородная бомба РДС-6С была испытана в СССР на Семипалатинском полигоне 12 августа 1953 года. В отличие от американской конструкции советский термоядерный заряд можно было на самолёте доставлять на территорию противника. Его разработала группа физиков под руководством Андрея Дмитриевича Сахарова и Юлия Борисовича Харитона при использовании схемы «Слойка». В её внешней оболочке находилось обычное взрывчатое вещество (тротил), в середине между слоями — термоядерное горючее, а в центре — ядерный заряд. Взрывчатое вещество запускали с помощью электродетонаторов, в результате чего происходило сжатие бомбы, ядерный заряд в центре взрывался и смешивался с термоядерным горючим. Начиналась реакция неуправляемого синтеза, то есть термоядерный взрыв. Мощность этого взрыва составила 400 килотонн — в 20 раз выше энерговыделения первой американской атомной бомбы. В радиусе четырёх километров вокруг эпицентра образовалась зона сплошных разрушений, всё было выжжено, а земля и скалы спеклись в сплошное стекло.

Метки: СССР, Тайны 20 века, оружие, США, бомба, Курчатов, уран, реактор, плутоний

Галерея

Создание атомной бомбы в России

Последствия бомбардировок и история жителей японских городов потрясли И. Сталина. Стало понятно, что создание собственного ядерного оружия – это вопрос национальной безопасности. 20 августа 1945 года в России начал свою работу комитет по атомной энергии, который возглавил Л. Берия.

Исследования по ядерной физике велись в СССР еще с 1918 года. В 1938 году при Академии наук была создана комиссия по атомному ядру. Но с началом войны были прекращены практически все работы в этом направлении.

В 1943 году советские разведчики передали из Англии закрытые научные труды по атомной энергии, из которых было видно, что создание атомной бомбы продвинулось далеко вперед. В это же время с помощью резидентов в США были внедрены надежные агенты в несколько центров американских ядерных исследований. Они передавали информацию по атомной бомбе советским ученым.

Техническое задание на разработку двух вариантов атомной бомбы составил их создатель и один из научных руководителей Ю. Харитон. 1 июня 1946 года задание было подписано. В соответствии с ним планировалось создание РДС («реактивного двигателя специального») с индексом 1 и 2:

  1. РДС-1 – бомба с зарядом из плутония, который предполагалось подрывать путем сферического обжатия. Его устройство передала русская разведка.
  2. РДС-2 – пушечная бомба с двумя частями уранового заряда, которые должны сближаться в стволе пушки до создания критической массы.

В истории знаменитого РДС самую распространенную расшифровку – «Россия делает сама» – придумал заместитель Ю. Харитона по научной работе К. Щeлкин. Эти слова очень точно передавали суть работ.

Информация о том, что СССР овладел секретами ядерного оружия, вызвало в США стремление к быстрейшему началу превентивной войны. В июле 1949 появился план «Троян», по которому боевые действия планировалось начать 1 января 1950 года. Затем дата нападения была перенесена на 1 января 1957 года с тем условием, чтобы в войну вступили все страны НАТО.

Сведения, поступившие по каналам разведки, ускорили работу советских ученых. По мнению западных специалистов, в России ядерное оружие могло быть создано не раньше 1954-1955 года. Однако испытание первой атомной бомбы произошло в СССР в конце августа 1949 года.

На полигоне в Семипалатинске 29 августа 1949 года было подорвано ядерное устройство РДС-1 – первая советская атомная бомба, которую изобрел коллектив ученых, возглавляемый И. Курчатовым и Ю. Харитоном. Этот взрыв имел мощность 22 Кт. Конструкция заряда принадлежала американскому «Толстяку», а электронная начинка была создана советскими учеными.

План «Троян», согласно которому американцы собирались сбросить атомные бомбы на 70 городов СССР, был сорван из-за вероятности ответного удара. Событие на Семипалатинском полигоне сообщило миру о том, что советская атомная бомба положила конец американской монополии на владение новым оружием. Это изобретение полностью разрушило милитаристский план США и НАТО и предупредило развитие Третьей мировой войны. Началась новая история – эпоха мира во всем мире, существующего под угрозой тотального уничтожения.

Удобство в обслуживании

«Урановый проект» — немцы начинают и проигрывают

В сентябре 1939 года «Урановый проект» засекретили. Для участия в программе привлекли 22 авторитетных научных центра, курировал исследования министр вооружений Альберт Шпеер. Сооружение установки для разделения изотопов и производство урана для вытяжки из него изотопа, поддерживающего цепную реакцию, поручили концерну «ИГ Фарбениндустри».

Два года группа маститого ученого Гейзенберга изучала возможности создания реактора с применением урана и тяжелой воды. Потенциальное взрывчатое вещество (изотоп уран-235) можно было вычленить из урановой руды.

Но для работы атомного реактора необходим ингибитор, замедляющий реакцию, – графит или тяжелая вода. Выбор последнего варианта создал непреодолимую проблему.

https://youtube.com/watch?v=2qtI8CLeLoc

Единственный завод по производству тяжелой воды, который находился в Норвегии, после оккупации был выведен из строя бойцами местного сопротивления, а небольшие запасы ценного сырья были вывезены во Францию.

Быстрой реализации ядерной программы помешал также взрыв опытного ядерного реактора в Лейпциге.

Гитлер поддерживал урановый проект до тех пор, пока надеялся получить сверхмощное оружие, способное повлиять на исход развязанной им войны. После сокращения государственного финансирования программы работы какое-то время продолжались.

В 1944 году Гейзенбергу удалось создать литые урановые пластины, под реакторную установку в Берлине соорудили специальный бункер.

Завершить эксперимент для достижения цепной реакции планировали в январе 1945 года, но через месяц оборудование срочно переправили к швейцарской границе, где его развернули только через месяц. В ядерном реакторе было 664 кубика урана массой 1525 кг. Он был окружен графитовым отражателем нейтронов массой 10 тонн, в активную зону дополнительно загрузили полторы тонны тяжелой воды.

23 марта реактор наконец-то заработал, но доклад в Берлин был преждевременным: критической отметки реактор не достиг, и цепная реакция не возникла. Дополнительные расчеты показали, что массу урана надо увеличить, как минимум, на 750 кг, пропорционально добавив и количество тяжелой воды.

Но запасы стратегического сырья были на пределе, как и судьба Третьего рейха. 23 апреля в деревню Хайгерлох, где проводились испытания, вошли американцы. Военные демонтировали реактор и переправили его в США.

Устройство атомной бомбы

Современные ядерные бомбы как средства поражения противника создаются на основе передовых технических решений, суть которых широкой огласке не придается. Но основные элементы присущие этому виду оружия, можно рассмотреть на примере устройства ядерной бомбы с кодовым названием «Толстяк», сброшенной в 1945 году на один из городов Японии.

Мощность взрыва равнялась 22.0 кт в тротиловом эквиваленте.

Она имела следующие конструктивные особенности:

  • длинна изделия составляла 3250.0 мм, при диаметре объемной части — 1520.0 мм. Общий вес более 4.5 тонн;
  • корпус представлен эллиптической формой. Во избежание преждевременного разрушения из — за попадания зенитных боеприпасов и нежелательных воздействий иного рода, для его изготовления использовалась 9.5 мм бронированная сталь;
  • корпус разделен на четыре внутренние части: нос, две половины эллипсоида (основной — отсек для ядерной начинки), хвост.
  • носовой отсек укомплектован аккумуляторными батареями;
  • основной отсек, как носовой, для предупреждения попадания вредных сред, влаги, создания комфортных условий для работы бородатчика вакуумируются;
  • в эллипсоиде размещалось плутониевое ядро, охваченное урановым тампером (оболочкой). Он играл роль инерционного ограничителя течением ядерной реакции, обеспечивая максимальную активности оружейного плутония, путем отражения нейтронов к стороне активной зоны заряда.

Внутри ядра размещали первичный источник нейтронов, носящий название инициатор или «ежик». Представлен бериллием шарообразной формы диаметром 20.0 мм с наружным покрытием на основе полония — 210.

Упрощенная схема ядерной бомбы

Следует отметить, что экспертным сообществом такая конструкция ядерного боеприпаса определена, малоэффективной, ненадежной при использовании. Нейтронное инициирование неуправляемого типа в дальнейшем не использовалось.

Примечания[править]

Как правильно одевать наручники на экзамене охранника

Трудовой арбитраж, создаваемый как из представителей нанимателя и коллектива сотрудников, так и уполномоченных государственных органов. Этим методом могут воспользоваться те, у кого есть задолженность по налоговым платежам либо перед кредиторами.

Как пройти тестирование по спецсредствам охранника 4, 5, 6 разряда

Приложение: Соглашение между министерством и администрацией Новосибирской области о совместном участии в реализации мероприятий Программы на 5 листах в 2 экз. Дополнительно в документе освещаются вопросы, связанные с управлением филиала, финансово-хозяйственной деятельностью, штатом сотрудников, бухгалтерской отчетностью и условиями прекращения работы.

Какие виды специальных средств разрешается использовать в частной охранной деятельности? При необходимой обороне субъектом посягательства, отражаемого обороняющимся, является:. В соответствии с действующим законодательством при необходимой обороне допускается причинение вреда:. Могут ли действия охранника по защите жизни и здоровья другого лица расцениваться как действия в состоянии необходимой обороны :. Допускается ли причинение вреда третьим лицам в состоянии необходимой обороны? Причинение вреда, менее значительного, чем предотвращенный вред, является обязательным условием правомерности действий:.

Ссылки[править | править код]

Иноязычные ресурсы

Немирный атом Игоря Курчатова

Сегодня каждый школьник сможет ответить на вопрос о том, кто изобрёл атомную бомбу в Советском Союзе. А тогда, в начале 30-х годов прошлого столетия, этого не знал никто.

В 1932 году академик Игорь Васильевич Курчатов одним из первых в мире начинает изучение атомного ядра. Собрав вокруг себя единомышленников, Игорь Васильевич в 1937 году создаёт первый в Европе циклотрон. В этом же году он со своими единомышленниками создаёт и первые искусственные ядра.

В 1939 году И. В. Курчатов начинает изучение нового направления — ядерной физики. После нескольких лабораторных успехов в изучении этого явления учёный получает в своё распоряжение засекреченный исследовательский центр, который был назван «Лаборатория № 2». В наши дни этот засекреченный объект называется «Арзамас-16».

Целевым направлением этого центра было серьёзное исследование и создание ядерного оружия. Теперь становится очевидным, кто создал атомную бомбу в Советском Союзе. В его команде тогда было всего лишь десять человек.

Испытание первой советской атомной бомбы

Работа шла ударными темпами, поэтому, после начала запуска проекта в 42 году, уже 29 августа 1949 года было произведено первое успешное испытание.

Испытал бомбу ученый и военный коллектив под организацией Харитона. Ответственность за любые промашки была самой жесткой, поэтому все участники работы относились к своему делу предельно аккуратно.

Ядерный полигон, на котором случилось это историческое событие, называется Семипалатинский полигон, и находится он на просторах территории нынешнего Казахстана, а в то время — Казахской ССР. В дальнейшем появились и другие места для таких испытаний.

Мощность РДС-1 составила 22 килотонны, при ее взрыве состоялось огромное количество разрушений. Их хронология и сегодня представляет большой интерес.

Вот некоторые нюансы подготовки взрыва:

  1. Для проверки силы воздействия на полигоне были построены дома гражданского типа из дерева и бетонных панелей. Там же было размещено около 1500 животных, на которых планировалось проверить воздействие бомбы.
  2. Также при эксперименте использовались сектора с различными типами вооружения, укрепленные объекты и защищенные сооружения.
  3. Сама бомба была установлена на металлической башне высотой почти 40 метров.

Когда взрыв был произведен, то металлическая башня, где стояла бомба, просто исчезла, а на ее месте образовалась дыра в земле на 1,5 метра. Из 1500 животных погибло около 400.

Многие бетонные конструкции, дома, мосты, гражданский и военный транспорт были безнадежно испорчены. Курирование работой проводилось на высшем уровне, поэтому никаких незапланированных неприятностей не возникло.

Советский проект

Только на второй год Великой Отечественной войны руководство СССР было вынуждено обратить внимание на сообщения разведки о зарубежных разработках нового оружия. Лишь 28 сентября 1942 года Государственный комитет обороны (ГКО) принял совершенно секретное распоряжение «Об организации работ по урану», которое, впрочем, целых полгода «висело» без реализации, поскольку все силы страны в это время были направлены на отражение гитлеровского наступления на Сталинград и Северный Кавказ

Но сразу же после завершения Сталинградской битвы в кабинете Сталина прошло совещание по урановой проблеме, итогом которого стало распоряжение ГКО от 11 февраля 1943 года о создании Лаборатории №2 АН СССР под руководством профессора Игоря Курчатова. Тогда же в числе задач, поставленных правительством перед физиками, главной была обозначена следующая: «раскрытие путей овладения энергией деления урана и исследования возможности военного применения энергии урана». Организационной частью этих работ руководил генерал Авраамий Завенягин, а общее руководство атомным проектом Государственный комитет обороны (ГКО СССР) поручил главе НКВД Лаврентию Берии.

Как развивались технологии дальше

Открытие французского механика относительно устройства переменного тока получило широкое применение только в 70-х года ХХ века. Все дело в том, что он только изобрел первый трансформатор, хотя изобретение требовало совершенствование. На основании созданного прототипа другие ученые занимались его дальнейшей разработкой. В 1876 году П.Н. Яблочков представил усовершенствованную модель трансформатора. Хотя нужно сказать, что были внесены немного изменений и дополнений. К примеру:

  1. В качестве сердечника ученый использовал специальный стержень, на который непосредственно осуществлялась намотка обмотки.
  2. Вместо, ранее используемой пружинной пластины за основу он взял индукционную катушку.

Благодаря внесенным изменениям работа первичной обмотки осуществлялась согласно обусловленной последовательности, тем самым предоставляя напряжение, которое требовалось для работы электроприборов.

Но следует сказать, что совершенствование первого трансформатора осуществлялось и другими учеными. Непременно необходимо упомянуть, что Яблочков сделал преобразующее ток устройство с разомкнутыми сердечниками, что в свою очередь предусматривало большие затраты электроэнергии. Спустя некоторое время братья Гопкинсоны в 1882 году сделали трансформатор с замкнутыми сердечниками и это послужило стартом для экономии потребления электричества в будущем.

Сутью совершенствования стало то, что они поставили на сердцевину катушки, имеющие высокое и низкое напряжение. А вот сам стержень состоял из проволоки и стальных полосок, которые разделялись между собой материалом с изоляционными характеристиками.

В дальнейшем работы по усовершенствованию трансформаторов продолжались. Основанием этого являлось уменьшение потребления электроэнергии, поскольку предыдущие устройства ее расходовали достаточно много. Немаловажным открытием считается изобретение трехфазного трансформатора русским инженером Доливо-Добровольским в 1890 году. На основании произведенных ним расчетов он доказал, что благодаря трехфазному трансформатору можно экономить потребляемую электроэнергию.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector