Термоядерное оружие

Содержание

Примечания

Комментарии
  1. Первые советские ядерные испытания получали кодовые наименования от американского прозвища Иосифа (Джозефа) Сталина «Дядя Джо».
Источники
  1. Лоуренс У. Л. Люди и атомы. — М.: Атомиздат, 1967, с. 207.
  2. ↑ В случае оставления в «царь-бомбе» уранового слоя, она, конечно, взорвалась бы на 100 мегатонн вместо 50, однако это вызвало бы катастрофически сильное загрязнение полигона радиоактивными продуктами реакции урана[значимость факта?]
  3. Её боевое значение вообще было довольно спорно из-за слишком большого веса — для испытаний специально переделывали несколько тяжёлых бомбардировщиков
  4. , p. 157.
  5.  (нем.). Дата обращения: 14 декабря 2020.

  6. Gordon Corera.  (англ.). BBC News (10 November 2008). Дата обращения: 28 октября 2011.
  7. Карера Г. . BBC Russian.com (11 ноября 2008). Дата обращения: 31 октября 2011.

  8.  (недоступная ссылка). Дата обращения: 24 июня 2013.
  9.  (недоступная ссылка). Дата обращения: 23 декабря 2016.

Лётно-технические характеристики

1980 год

Профилактическая обработка от болезней и вредителей

«Колоссальная и нетривиальная работа»

Первый прообраз термоядерной бомбы США испытали 1 ноября 1952 года на Маршалловых островах. Мощность боеприпаса составила 10,4 мегатонны, превысив в 450 раз мощность 21-килотонной бомбы «Толстяк», сброшенной на Нагасаки 9 августа 1945 года.

Советский Союз впервые испытал прототип водородной бомбы 12 августа 1953 года на Семипалатинском полигоне (Казахская ССР). Это была четвёртая попытка «протестировать» термоядерное оружие. Боеприпас мощностью 400 килотонн получил название «изделие РДС‑6c». 

Также по теме


«Зрелище было неземное»: 55 лет назад Советский Союз испытал Царь-бомбу

30 октября 1961 года СССР провёл испытание самой мощной в истории термоядерной авиационной бомбы. RT восстановил события того дня, а…

«Испытание вызвало огромный интерес и волнение во всём мире. В США его окрестили «Джо-4». Четыре — порядковый номер советских испытаний, Джо — соответствует Иосифу, имя Сталина. Мощность взрыва и другие параметры оказались близкими к расчётным. Начальство было в восторге. Мы же понимали, что ещё предстоит колоссальная и нетривиальная работа», — воспоминал «отец водородной бомбы», академик Андрей Сахаров.

В последующие девять лет в рамках программы по созданию мощнейшей в мире водородной бомбы СССР провёл свыше 200 различных испытаний. В итоге советские учёные смогли решить эту сложнейшую технологическую задачу.

17 октября 1961 года на XXII съезде КПСС Никита Хрущёв представил делегатам отчётный доклад, где содержалась информация о ходе работ по созданию термоядерного боеприпаса. В своём выступлении советский лидер анонсировал грядущее испытание мощнейшей водородной бомбы.

  • Первый секретарь ЦК КПСС Никита Хрущёв
  • РИА Новости

«Хочу сказать, что очень успешно идут у нас испытания и нового ядерного оружия. Скоро мы завершим эти испытания. Очевидно, в конце октября. В заключение, вероятно, взорвём водородную бомбу мощностью в 50 млн тонн тротила (мегатонн)», — сообщил Хрущёв.

Также по теме


Ядерный пацифизм: насколько оправданны призывы запретить атомное оружие

16 июля 1945 года Соединённые Штаты впервые в истории человечества провели испытание атомной бомбы. В 1949 году обладателем самого…

30 октября 1961 года состоялось успешное испытание «чистой» водородной бомбы АН602, мощность которой составила 58 мегатонн. Это был самый сильный ядерный взрыв в истории человечества. Испытание прошло в Арктике на Государственном полигоне №6 «Сухой Нос» (Новая Земля).

Бомба была закреплена под фюзеляжем самолёта Ту-95. Экипаж под руководством подполковника Андрея Дурновцева сбросил АН602 с высоты 10,5 км. После этого в хвостовой части бомбы раскрылся парашют. Это было необходимо, чтобы лётчики смогли удалиться на безопасное от взрыва расстояние.

Подрыв АН602 произошёл на высоте примерно 4,2 км. Возникла очень яркая вспышка, которую можно было видеть даже за тысячу километров. Через 30 секунд после взрыва огненный купол достиг высоты 30 км. Спустя несколько минут купол превратился в грибообразное облако.

Чего не может термоядерная бомба

Водород — элемент чрезвычайно распространенный, достаточно его и в атмосфере Земли.

Одно время поговаривали, что достаточно мощный термоядерный взрыв может запустить цепную реакцию и весь воздух на нашей планете выгорит. Но это миф.

Не то что газообразный, но и жидкий водород недостаточно плотный, чтобы начался термоядерный синтез. Его нужно сжимать и нагревать ядерным взрывом, желательно c разных сторон, как это делается двухступенчатым запалом. В атмосфере таких условий нет, поэтому самоподдерживающиеся реакции слияния ядер там невозможны.

Это не единственное заблуждение о термоядерном оружии. Часто говорят, что взрыв «чище» ядерного: мол, при слиянии ядер водорода «осколков» — опасных короткоживущих ядер атомов, дающих радиоактивное загрязнение, — получается меньше, чем при делении ядер урана.

Заблуждение это основано на том, что при термоядерном взрыве большая часть энергии якобы выделяется за счет слияния ядер. Это неправда. Да, «Царь-бомба» была такой, но только потому, что ее урановую «рубашку» для испытаний заменили на свинцовую. Современные двухступенчатые запалы приводят к значительному радиоактивному загрязнению.

Зона возможного тотального поражения «Царь-бомбой», нанесенная на карту Парижа. Красный круг — зона полного разрушения (радиус 35 км). Желтый круг — размер огненного шара (радиус 3,5 км).

Правда, зерно истины в мифе о «чистой» бомбе все же есть. Взять лучшую американскую термоядерную боеголовку W88. При ее взрыве на оптимальной высоте над городом площадь сильных разрушений практически совпадет с зоной радиоактивного поражения, опасного для жизни. Погибших от лучевой болезни будет исчезающе мало: люди погибнут от самого взрыва, а не радиации.

Еще один миф гласит, что термоядерное оружие способно уничтожить всю человеческую цивилизацию, а то и жизнь на Земле. Это тоже практически исключено. Энергия взрыва распределена в трех измерениях, поэтому при росте мощности боеприпаса в тысячу раз радиус поражающего действия растет всего в десять раз — мегатонная боеголовка имеет радиус поражения всего в десять раз больше, чем тактическая, килотонная.

66 миллионов лет назад столкновение с астероидом привело к исчезновению большинства наземных животных и растений. Мощность удара составила около 100 млн мегатонн — это в 10 тыс. раз больше суммарной мощности всех термоядерных арсеналов Земли. 790 тыс. лет назад с планетой столкнулся астероид, удар был мощностью в миллион мегатонн, но никаких следов хотя бы умеренного вымирания (включая наш род Homo) после этого не случилось. И жизнь в целом, и человек куда крепче, чем они кажутся.

Правда о термоядерном оружии не так популярна, как мифы. На сегодня она такова: термоядерные арсеналы компактных боеголовок средней мощности обеспечивают хрупкий стратегический баланс, из-за которого никто не может свободно утюжить другие страны мира атомным оружием. Боязнь термоядерного ответа — более чем достаточный сдерживающий фактор.

//

Модификации ГАЗ 2705

ГАЗ 2705 2.7 MT

Цена от

1 264 000

Максимальная скорость, км/ч 130
Время разгона до 100 км/ч, сек 30
Двигатель Бензиновый
Рабочий объем, см3 2690
Мощность, л.с. / оборотах 107/4000
Момент, Н·м / оборотах 221/2350
Расход комби, л на 100 км
Тип коробки передач Механическая, 5 передач
Привод Задний
Показать все характеристики

ГАЗ 2705 2.7 MT 4х4

Цена от

1 264 000

Максимальная скорость, км/ч 130
Время разгона до 100 км/ч, сек 30
Двигатель Бензиновый
Рабочий объем, см3 2690
Мощность, л.с. / оборотах 107/4000
Момент, Н·м / оборотах 221/2350
Расход комби, л на 100 км
Тип коробки передач Механическая, 5 передач
Привод Полный
Показать все характеристики

ГАЗ 2705 2.9 MT

Цена от

1 304 000

Максимальная скорость, км/ч 120
Время разгона до 100 км/ч, сек 30
Двигатель Бензиновый
Рабочий объем, см3 2890
Мощность, л.с. / оборотах 100/4000
Момент, Н·м / оборотах 221/2350
Расход комби, л на 100 км
Тип коробки передач Механическая, 5 передач
Привод Задний
Показать все характеристики

ГАЗ 2705 2.8 TD MT 4х4

Цена от

1 539 000

Максимальная скорость, км/ч 120
Время разгона до 100 км/ч, сек 25
Двигатель Дизельный с турбонаддувом
Рабочий объем, см3 2781
Мощность, л.с. / оборотах 120/3600
Момент, Н·м / оборотах 270/1400-3000
Расход комби, л на 100 км
Тип коробки передач Механическая, 5 передач
Привод Полный
Показать все характеристики

ГАЗ 2705 2.8 TD MT

Цена от

1 599 000

Максимальная скорость, км/ч 120
Время разгона до 100 км/ч, сек 25
Двигатель Дизельный с турбонаддувом
Рабочий объем, см3 2781
Мощность, л.с. / оборотах 120/3600
Момент, Н·м / оборотах 270/1400-3000
Расход комби, л на 100 км
Тип коробки передач Механическая, 5 передач
Привод Задний
Показать все характеристики

Принцип действия водородной бомбы

Водородная бомба — сложнейшее техническое устройство, взрыв которого требует последовательного протекания ряда процессов.

Сначала происходит детонация заряда-инициатора, находящегося внутри оболочки ВБ (миниатюрная атомная бомба), результатом которой становится мощный выброс нейтронов и создание высокой температуры, требуемой для начала термоядерного синтеза в основном заряде. Начинается массированная нейтронная бомбардировка вкладыша из дейтерида лития (получают соединением дейтерия с изотопом лития-6).

Под действием нейтронов происходит расщепление лития-6 на тритий и гелий. Атомный запал в этом случае становится источником материалов, необходимых для протекания термоядерного синтеза в самой сдетонировавшей бомбе.

Смесь трития и дейтерия запускает термоядерную реакцию, вследствие чего происходит стремительное повышение температуры внутри бомбы, и в процесс вовлекается всё больше и больше водорода. Принцип действия водородной бомбы подразумевает сверхбыстрое протекание данных процессов (устройство заряда и схема расположения основных элементов способствует этому), которые для наблюдателя выглядят мгновенными.

Примечания[править]

Последствия обогащения

Для получения ядерной энергии путем деления особый интерес представляют ядра изотопов урана с атомным весом 233 и 235 (233U и 235U) и плутония — 239 (239Pu), делящиеся под воздействием нейтронов. Связь частиц во всех ядрах обусловлена сильным взаимодействием, особо эффективным на малых расстояниях. В крупных ядрах тяжелых элементов эта связь слабее, поскольку электростатические силы отталкивания между протонами как бы «разрыхляют» ядро. Распад ядра тяжелого элемента под действием нейтрона на два быстро летящих осколка сопровождается высвобождением большого количества энергии, испусканием гамма-квантов и нейтронов — в среднем 2,46 нейтрона на одно распавшееся урановое ядро и 3,0 — на одно плутониевое. Благодаря тому что при распаде ядер число нейтронов резко возрастает, реакция деления может мгновенно охватить все ядерное горючее. Так происходит при достижении «критической массы», когда начинается цепная реакция деления, приводящая к атомному взрыву.

1 — корпус

2 — взрывной механизм

3 — обычное взрывчатое вещество

4 — электродетонатор

5 — нейтронный отражатель

6 — ядерное горючее (235U)

7 — источник нейтронов

8 — процесс обжатия ядерного горючего направленным внутрь взрывом

В зависимости от способа получения критической массы различают атомные боеприпасы пушечного и имплозивного типа. В простом боеприпасе пушечного типа две массы 235U, каждая из которых меньше критической, соединяются с помощью заряда обычного взрывчатого вещества (ВВ) путем выстрела из своеобразной внутренней пушки. Ядерное горючее можно разделить и на большее число частей, которые будут соединяться взрывом окружающего их ВВ. Такая схема сложнее, но позволяет достигать больших мощностей заряда.

В боеприпасе имплозивного типа уран 235U или плутоний 239Pu обжимается взрывом расположенного вокруг них обычного взрывчатого вещества. Под действием взрывной волны плотность урана или плутония резко повышается и «надкритическая масса» достигается при меньшем количестве делящегося материала. Для более эффективного протекания цепной реакции горючее в боеприпасах обоих типов окружают нейтронным отражателем, например на основе бериллия, а для инициирования реакции в центре заряда располагают источник нейтронов.

Изотопа 235U, необходимого для создания ядерного заряда, в природном уране содержится всего 0,7%, остальное — стабильный изотоп 238U. Для получения достаточного количества разделяющегося материала производят обогащение природного урана, и это было одной из самых сложных в техническом плане задач при создании атомной бомбы. Плутоний получают искусственно — он накапливается в промышленных ядерных реакторах, за счет превращения 238U в 239Pu под действием потока нейтронов.

Клуб взаимного устрашения

Взрыв советской ядерной бомбы 29 августа 1949 года сообщил всем об окончании американской ядерной монополии. Но ядерная гонка только разворачивалась, к ней очень скоро присоединились новые участники.

3 октября 1952 года взрывом собственного заряда заявила о вступлении в «ядерный клуб» Великобритания, 13 февраля 1960 года — Франция, а 16 октября 1964 года — Китай.

Политическое воздействие ядерного оружия как средства взаимного шантажа хорошо известно. Угроза быстрого нанесения противнику мощного ответного ядерного удара была и остается главным сдерживающим фактором, вынуждающим агрессора искать другие пути ведения военных действий

Это проявилось и в специфическом характере третьей мировой войны, осторожно именовавшейся «холодной»

Официальная «ядерная стратегия» хорошо отражала и оценку общей военной мощи. Так, если вполне уверенное в своей силе государство СССР в 1982 году объявило о «неприменении ядерного оружия первым», то ельцинская Россия вынуждена была объявить о возможности применения ядерного оружия даже против «неядерного» противника. «Ракетно-ядерный щит» и сегодня остался главной гарантией от внешней опасности и одной из основных опор самостоятельной политики. США в 2003 году, когда агрессия против Ирака была уже решенным делом, от болтовни о «несмертельном» оружии перешли к угрозе «возможного использования тактического ядерного оружия». Другой пример. Уже в первые годы XXI века «ядерный клуб» пополнили Индия и Пакистан. И почти сразу последовало резкое обострение противостояния на их границе.

Эксперты МАГАТЭ и пресса давно утверждают, что Израиль «в состоянии» произвести несколько десятков ядерных боеприпасов. Израильтяне же предпочитают загадочно улыбаться — сама возможность наличия ядерного оружия остается мощным средством давления даже в региональных конфликтах.

Как развивались технологии дальше

Открытие французского механика относительно устройства переменного тока получило широкое применение только в 70-х года ХХ века. Все дело в том, что он только изобрел первый трансформатор, хотя изобретение требовало совершенствование. На основании созданного прототипа другие ученые занимались его дальнейшей разработкой. В 1876 году П.Н. Яблочков представил усовершенствованную модель трансформатора. Хотя нужно сказать, что были внесены немного изменений и дополнений. К примеру:

  1. В качестве сердечника ученый использовал специальный стержень, на который непосредственно осуществлялась намотка обмотки.
  2. Вместо, ранее используемой пружинной пластины за основу он взял индукционную катушку.

Благодаря внесенным изменениям работа первичной обмотки осуществлялась согласно обусловленной последовательности, тем самым предоставляя напряжение, которое требовалось для работы электроприборов.

Но следует сказать, что совершенствование первого трансформатора осуществлялось и другими учеными. Непременно необходимо упомянуть, что Яблочков сделал преобразующее ток устройство с разомкнутыми сердечниками, что в свою очередь предусматривало большие затраты электроэнергии. Спустя некоторое время братья Гопкинсоны в 1882 году сделали трансформатор с замкнутыми сердечниками и это послужило стартом для экономии потребления электричества в будущем.

Сутью совершенствования стало то, что они поставили на сердцевину катушки, имеющие высокое и низкое напряжение. А вот сам стержень состоял из проволоки и стальных полосок, которые разделялись между собой материалом с изоляционными характеристиками.

В дальнейшем работы по усовершенствованию трансформаторов продолжались. Основанием этого являлось уменьшение потребления электроэнергии, поскольку предыдущие устройства ее расходовали достаточно много. Немаловажным открытием считается изобретение трехфазного трансформатора русским инженером Доливо-Добровольским в 1890 году. На основании произведенных ним расчетов он доказал, что благодаря трехфазному трансформатору можно экономить потребляемую электроэнергию.

Ядерное оружие

Первые испытания атомной бомбы, как известно, произвела США еще в 1945. Это оружие было испытано в «полевых» условиях Второй Мировой на жителях японских городов Хиросима и Нагасаки. Они действуют по принципу деления. Во время взрыва запускается цепная реакция, которая провоцирует деления ядер на два, с сопутствующим высвобождением энергии. Для этой реакции в основном используют уран и плутоний. С этими элементами и связаны наши представления о том, из чего делаются ядерные бомбы. Так как в природе уран встречается лишь в виде смеси трех изотопов, из которых только один способен поддерживать подобную реакцию, необходимо производить обогащение урана. Альтернативой является плутоний-239, который не встречается в природе, и его нужно производить из урана.

Ядерное оружие

H-bomb

А вот горючее для термоядерного синтеза критической массы не имеет. Вот Солнце, наполненное термоядерным топливом, висит над головой, внутри его уже миллиарды лет идет термоядерная реакция, — и ничего, не взрывается. К тому же при реакции синтеза, например, дейтерия и трития (тяжелого и сверхтяжелого изотопа водорода) энергии выделяется в 4,2 раза больше, чем при сгорании такой же массы урана-235.

Изготовление атомной бомбы было скорее экспериментальным, чем теоретическим процессом. Создание же водородной бомбы потребовало появления совершенно новых физических дисциплин: физики высокотемпературной плазмы и сверхвысоких давлений. Прежде чем начинать конструировать бомбу, надо было досконально разобраться в природе явлений, происходящих только в ядре звезд. Никакие эксперименты тут помочь не могли — инструментами исследователей были только теоретическая физика и высшая математика. Не случайно гигантская роль в разработке термоядерного оружия принадлежит именно математикам: Уламу, Тихонову, Самарскому и т. д.

Последствия испытания

Основная политико-пропагандистская цель, которая ставилась перед этим испытанием, была полностью достигнута. Было наглядно продемонстрировано владение Советским Союзом неограниченным по мощности оружием массового поражения. Тротиловый эквивалент наиболее мощной термоядерной бомбы из числа испытанных к тому моменту в США был почти вчетверо меньше, чем у АН602, при этом АН602 была сброшена с самолёта-носителя, в отличие от американского громоздкого устройства, взорванного в ангаре.

Важным научным результатом стала экспериментальная проверка принципов расчёта и конструирования термоядерных зарядов многоступенчатого типа. Было экспериментально доказано, что максимальная мощность термоядерного заряда, в принципе, не ограничена ничем (стоит, однако, отметить, что ещё 30 октября 1949 года — за три года до испытания «Майк» — в Дополнении к официальному отчету Общего совещательного комитета Комиссии по атомной энергии США физики-ядерщики Энрико Ферми и Исидор Раби уже сделали вполне однозначный вывод, что термоядерное оружие имеет «неограниченность разрушительной силы»; стоимость увеличения мощности боеприпаса составляла — в ценах 1950 финансового года — 60 центов за одну килотонну тротилового эквивалента или около 10 долларов за ещё одну Хиросиму). Так, в испытанном экземпляре бомбы для поднятия мощности взрыва ещё на 50 мегатонн достаточно было выполнить третью ступень бомбы (являлась оболочкой второй ступени) не из свинца, а из урана-238, как и предполагалось штатно. Замена материала оболочки и понижение мощности взрыва были обусловлены только желанием сократить до приемлемого уровня количество , а не стремлением уменьшить вес бомбы, как иногда полагают. Впрочем, вес АН602 от этого действительно уменьшился, но незначительно — урановая оболочка должна была весить примерно 2800 кг, свинцовая же оболочка того же объёма — исходя из меньшей плотности свинца — около 1700 кг. Достигнутое при этом облегчение чуть более одной тонны слабо заметно при общей массе АН602 не менее 24 тонн (даже если брать самую скромную оценку) и не влияло на положение дел с её транспортировкой.

Впрочем, следует заметить, что «Царь-бомба» действительно была значительно облегчена сравнительно с первоначальным проектом, в котором её масса достигала 40 тонн, что было решительно отвергнуто А. Н. Туполевым — 40-тонную бомбу не смог бы поднять ни Ту-95 (максимальная бомбовая нагрузка выбранного в качестве носителя тяжёлого стратегического бомбардировщика Ту-95 — его вариант под «изделие В» получил обозначение , производственный индекс этой модификации Ту-95 был «заказ 242» — даже после модернизации ограничивалась 27 тоннами), ни любой другой советский самолёт того времени.

Нельзя также утверждать, что «взрыв стал одним из самых чистых в истории атмосферных ядерных испытаний» — первой ступенью бомбы был урановый заряд мощностью в 1,5 мегатонны, что само по себе обеспечило большое количество радиоактивных осадков. Тем не менее, можно считать, что АН602 действительно была относительно чистой — более 97 % мощности взрыва давала практически не создающая радиоактивного загрязнения реакция термоядерного синтеза.

Изотопы водорода.

Также по теме:

ЯДЕРНОЕ ОРУЖИЕ

Атом водорода – простейший из всех существующих атомов. Он состоит из одного протона, являющегося его ядром, вокруг которого вращается единственный электрон. Тщательные исследования воды (H2O) показали, что в ней в ничтожном количестве присутствует «тяжелая» вода, содержащая «тяжелый изотоп» водорода – дейтерий (2H). Ядро дейтерия состоит из протона и нейтрона – нейтральной частицы, по массе близкой к протону.

Существует третий изотоп водорода – тритий, в ядре которого содержатся один протон и два нейтрона. Тритий нестабилен и претерпевает самопроизвольный радиоактивный распад, превращаясь в изотоп гелия. Следы трития обнаружены в атмосфере Земли, где он образуется в результате взаимодействия космических лучей с молекулами газов, входящих в состав воздуха. Тритий получают искусственным путем в ядерном реакторе, облучая изотоп литий-6 потоком нейтронов.

КПП

ГАЗель Бизнес комплектуется пятиступенчатой механической коробкой передач, заимствованной у классических ГАЗелей. Но в данном автомобиле многие ее компоненты были либо доработаны, либо заменены.

Обновленная коробка передач получила синхронизатор для задней передачи, когда раннее такого не встречалось. Помимо этого конструкция была дополнена чешскими сальниками, немецкими синхронизаторами и шведскими подшипниками.

Взаимодействие коробки передач с двигателем обеспечено однодисковым сухим сцеплением, имеющим гидравлический привод.

В версиях с полным приводом трансмиссия дополнительно оснащается двухступенчатой раздаточной коробкой.

Термоядерное оружие

Современное термоядерное оружие относится к стратегическому оружию, которое может применяться авиацией для разрушения в тылу противника
важнейших промышленных, военных объектов, крупных городов как цивилизационных центров. Наиболее известным типом термоядерного оружия являются термоядерные (водородные) бомбы, которые могут доставляться к цели самолетами. Термоядерными зарядами могут начиняться также боевые части ракет различного назначения, в том числе межконтинентальных баллистических ракет. Впервые подобная ракета была испытана в СССР еще в 1957 году, в настоящее время на вооружения Ракетных Войск Стратегического Назначения состоят ракеты нескольких типов, базирующиеся на мобильных пусковых установках, в шахтных пусковых установках, на подводных лодках.

Атомная бомба

В основе действия термоядерного оружия лежит использование термоядерной реакции с водородом или его соединениями. В этих реакциях,
протекающих при сверхвысоких температурах и давлении, энергия выделяется за счет образования ядер гелия из ядер водорода, или из ядер водорода и лития. Для образования гелия используется, в основном, тяжелый водород – дейтерий, ядра которого имеют необычную структуру – один протон и один нейтрон. При нагревании дейтерия до температур в несколько десятков миллионов градусов его атому теряют свои электронные оболочки при первых же столкновениях с другими атомами. В результате этого среда оказывается состоящей лишь из протонов и движущихся независимо от них электронов. Скорость теплового движения частиц достигает таких величин, что ядра дейтерия могут сближаться и благодаря действию мощных ядерных сил соединяться друг с другом, образуя ядра гелия. Результатом этого процесса и становится выделения энергии.

Принципиальная схема водородной бомбы такова. Дейтерий и тритий в жидком состоянии помещаются в резервуар с теплонепроницаемой оболочкой,
которая служит для длительного сохранения дейтерия и трития в сильно охлажденном состоянии (для поддержания из жидкостного агрегатного состояния). Теплонепроницаемая оболочка может содержать 3 слоя, состоящих из твердого сплава, твердой углекислоты и жидкого азота. Вблизи резервуара с изотопами водорода помещается атомный заряд. При подрыве атомного заряда изотопы водорода нагреваются до высоких температур, создаются условия для протекания термоядерной реакции и взрыва водородной бомбы. Однако, в процессе создания водородных бомб было установлено, что непрактично использовать изотопы водорода, так как в таком случае бомба приобретает слишком большой вес (более 60 т.), из-за чего нельзя было и думать об использовании таких зарядов на стратегических бомбардировщиках, а уж тем более в баллистических ракетах любой дальности. Второй проблемой, с которой столкнулись разработчики водородной бомбы была радиоактивность трития, которая делала невозможным его длительное хранение.

В ходе исследования 2 вышеуказанные проблемы были решены. Жидкие изотопы водорода были заменены твердым химическим соединением дейтерия с
литием-6. Это позволило значительно уменьшить размеры и вес водородной бомбы. Кроме того, гидрид лития был использован вместо трития, что позволило размещать термоядерные заряды на истребителях бомбардировщиках и баллистических ракетах.

Создание водородной бомбы не стало концом развития термоядерного оружия, появлялись все новые и новые его образцы, была создана водородно-
урановая бомба, а также некоторые ее разновидности – сверхмощные и, наоборот, малокалиберные бомбы. Последним этапом совершенствования термоядерного оружия стало создания так называемой «чистой» водородной бомбы.

Устройство термоядерной бомбы по принципу Теллера-Улама

Многие его детали по-прежнему остаются засекреченными, но есть достаточная уверенность, что все имеющееся ныне термоядерное оружие использует в качестве прототипа устройство, созданное Эдвардом Теллерос и Станиславом Уламом, в котором атомная бомба (т. е. первичный заряд) используется для генерации излучения, сжимает и нагревает термоядерное топливо. Андрей Сахаров в Советском Союзе, по-видимому, независимо придумал аналогичную концепцию, которую он назвал “третьей идеей”.

Схематически устройство термоядерной бомбы в этом варианте показано на рисунке ниже.

Дело в том, что в промышленности давно используется гидрид лития LiH для безбалонной транспортировки водорода. Разработчики бомбы (эта идея сначала была использована в СССР) просто предложили брать вместо обычного водорода его изотоп дейтерий и соединять с литием, поскольку с твердым термоядерным зарядом выполнить бомбу гораздо проще.

По форме вторичный заряд представлял собой цилиндр, помещенный в контейнер со свинцовой (или урановой) оболочкой. Между зарядами находится щит нейтронной защиты. Пространство, между стенками контейнера с термоядерным топливом и корпусом бомбы заполнено специальным пластиком, как правило, пенополистиролом. Сам корпус бомбы выполнен из стали или алюминия.

Эти формы изменились в последних конструкциях, таких как показанная на рисунке ниже.

Итог ядерных испытаний

Советский бомбардировщик сбросил бомбу в точно заданном на карте районе на высоте 10,5 тысячи метров. Парашютная система замедлила падение бомбы на 188 секунд до расчётной точки взрыва, произошедшего на высоте четырех километров. Согласно хронике событий, это произошло в 11 часов 33 минуты по московскому времени.

Самолёт-носитель к моменту взрыва успел улететь на 39 км от эпицентра, световая вспышка оставила следы оплавления в нескольких местах на его обшивке. Ударная волна настигла Ту-95В на удалении в 115 км от точки взрыва и серьёзно встряхнула, вызвав почти километровую потерю высоты, но самолёт благополучно вернулся на базу.

Результаты взрыва водородной бомбы на Новой Земле показали заметное превышение расчётных ожиданий по мощности: около 58 Мт вместо предполагаемой 51,5 Мт. Взрывная волна трижды обошла вокруг всего земного шара, нарушение радиосвязи по всей Арктике продолжалось в течение часа. Огненный шар взрыва достиг радиуса примерно 4,6 километра. Теоретически он мог бы вырасти до поверхности земли, однако, этому воспрепятствовала отражённая ударная волна. Из-за большого запаса высоты, воронки на месте взрыва не образовалось.

Термоядерный «гриб» имел диаметр до 97 километров и поднялся на высоту около 64 километров, к нижней границе космоса. Световая вспышка была замечена в Норвегии, Гренландии и даже на Аляске. Акустическая волна распространилась на 700-800 километров от эпицентра, её силы оказалось достаточно, чтобы выбить стёкла на зданиях острова Диксон. Деревянные строения в заброшенном посёлке, расположенным в 200 километрах от места взрыва, оказались разрушенными.

В конечном итоге испытанием термоядерной бомбы, произведённым в 1961 году на Новой Земле, были достигнуты все цели, поставленные руководством СССР. Взрыв произвёл мощный пропагандистский эффект на население стран Запада, хотя президент США Джон Кеннеди, комментируя это событие, подчеркнул сохранение за Америкой подавляющего превосходства в совокупной мощи ядерных вооружений. На тот момент американский ядерный арсенал превосходил советский в 17 раз. Но испытания «Царь-бомбы» стали одним из главных факторов, способствовавших подписанию ядерными державами в 1963 году в Москве договора о запрете проведения ядерных испытаний в космосе, на земле или под водой.

Для Советского Союза было важным, что испытания дало практическое подтверждение теоретическим расчётам учёных и конструкторов ядерного оружия. Хотя бомба АН 602 изначально не предназначалась для практического военного использования. Бомбардировщик Ту-95В не был способен долететь с такой боевой нагрузкой до территории США, а проводимые в дальнейшем разработки в области межконтинентальных баллистических ракет столь массивных и мощных зарядов уже не требовали.

Автор статьи:
Роев Олег

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector