Подводные лодки с единым дизельным двигателем

Единственный спасшийся

21 января 1945 года удача окончательно покинула немецкую U-1199. После успешной атаки на конвой лодку настигли британские корабли охранения. С сильной течью сразу в нескольких отсеках субмарина опустилась на дно на глубине в 73 метра с креном в почти 40 градусов, а вокруг продолжали рваться глубинные бомбы.

Командир приказал готовиться к покиданию корабля, а экипаж разобрал спасательное снаряжение. Выход предполагалось организовать через машинное отделение и центральный пост, экипаж из 47 человек разделился по этим отсекам. На поверхности появился только один член экипажа — штурман лодки Клауссен, которого среди пятен топлива и плавающих обломков подобрали британцы.

Британский конвой

По его словам, для ускорения затопления экипаж открыл вентили балластных цистерн. Сам Клауссен, включив спасательный аппарат, стоял на верхних ступенях трапа боевой рубки, прямо под люком. Другие члены экипажа стали терять сознание один за другим — или из-за отравления хлором, идущим из затопленных аккумуляторных батарей, или из-за перепада давления и вдыхания чистого кислорода из спасательных аппаратов.

После очередного взрыва, в результате которого лодка стала ещё быстрее заполняться водой, командир приказал Клауссену открывать люк.

Ослабевший штурман начал подниматься на поверхность. Ни о каком выдерживании режима декомпрессии речь не шла. Единственное, что он рефлекторно делал — выпускал через уголок рта воздух из лёгких. В большинстве случаев такие подъёмы оказываются смертельными, но немецкий подводник отделался лёгкими баротравмами.

Остальной экипаж так и остался в лодке. Возможно, моряк, стоявший за Клауссеном, в последний момент застрял и перекрыл путь к спасению остальным.

Это лишь три из немногих удачных случаев успешного выхода из затонувшей субмарины в годы Второй мировой. В успешных исходах свою роль играли и техника, и подготовка экипажей, и просто удача.

Бомба с доставкой на борт

Более никакими успехами американцы не блеснули. Ночная атакаРей» была неудачной. Японцам удалось скрыться. Однако неугомонный Фоли всё же хотел завершить начатое.Гато» заскочила на базу на Соломоновых островах, приняла топливо и торпеды и снова вышла на охоту, взяв курс к экватору.

20 декабря субмарина обнаружила там другой японский конвой: два судна под охраной охотника за ПЛ и миноносца направлялись на базу в Рабаул.Гато» снова атаковала противника в светлое время суток. На этот раз успешно.

USS Gato выходит в поход

Торпедированное судноЦунесима Мару» пошло ко дну, но эскорты, обнаружив американскую лодку, устроили ей настоящий ад. И хотя было сброшено 19 глубинных бомб — не так много, как могло бы быть — такой жаркой встречи с японцами у подводников ещё не было.

В своем отчёте Фоли писал:Фактически все бомбы взорвались прямо над нами, лодку сильно трясло после каждого взрыва».

Не рванула только потому, что лодка в тот момент находилась на меньшей глубине, чем был установлен взрыватель.

История России

Как устроена атомная подводная лодка ?

Подводная лодка — удивительная и сложная машина, которая позволила в свое время получить господство в морской среде. С подлодками связано бесчисленное количество мифов, что, впрочем, неудивительно, если учесть, что их создают в условиях особой секретности.

После того как в 30-х годах дизель-электрические подлодки уже перешагнули 20-узловой рубеж, казалось, эра подлодочных паросиловых установок завершилась навсегда. Но прошло всего 10—15 лет, и о них вновь вспомнили. Разница состояла лишь в том, что пар для турбины должен вырабатывать не привычный котел, сжигающий органическое топливо, а котел атомный. Один килограмм его ядерного горючего (урана-235) по выделяющейся тепловой энергии эквивалентен 2700 т каменного угля или 1700 т бензина.

В основе работы ядерной энергетической установки лежит управляемая цепная ядерная реакция. Эта реакция представляет собой самоподдерживающийся процесс деления ядер изотопов урана (или делящихся изотопов других элементов) под действием элементарных частиц — нейтронов, которые благодаря отсутствию электрического заряда легко проникают в атомные ядра.

При делении ядер образуются новые, более легкие ядра — осколки деления, испускаются нейтроны и освобождается большое количество энергии в виде тепла. Тепло через специальный трубки нагревает воду, вода преобразуется в пар, ну а тут уже включается в работу паровой двигатель, которой и приводит в движения винты. Это, разумеется, очень упрощенная схема, однако так легко понять основную суть.

Как я уже говорил выше, один килограмм его ядерного горючего (урана-235) по выделяющейся тепловой энергии эквивалентен 1700 т бензина. Таким образом, подводная лодка получает просто огромный запас хода без нужды в дозаправке. И может прибывать под водой месяцами.

Однако тогда появляется вопрос — откуда брать кислород для дыхания на такой длинный срок? Ответ прост: из того что всегда под рукой — из воды! Если пропустить через воду электрический ток, жидкость начнёт диссоциироваться на составляющие молекулу воды атомы. В результате процесса электролиза воды получают кислород и водород. Далее кислород хранится в сжатом виде, откуда и подключается к системе снабжения им экипажа.

И так: мы позаботились о дальности хода, и о кислороде на случай долгого погружения. Но как это погружение провести? Да так, что бы потом еще и всплыть получилось? Что ж, давайте рассмотрим как работает система погружения.

Система погружения и всплытия подводной лодки включает в себя балластные и вспомогательные цистерны, а также соединительные трубопроводы и арматуру. Основной элемент здесь – это цистерны главного балласта, за счет заполнения водой которых погашается основной запас плавучести ПЛ. Все цистерны входят в носовую, кормовую и среднюю группы. Их можно заполнять и продувать по очереди или одновременно. Балласт между дифферентными цистернами передувается при помощи сжатого воздуха или же перекачивается с помощью специальных помп. Дифферентовка – именно так называется прием, целью которого является «уравновешивание» подводной лодки

В остальном конструкция АПЛ меняется в зависимости от типа, вот кстати основные:

РПКСН ( Ракетный подводный крейсер стратегического назначения ) — эти субмарины несут на борту баллистические ракеты с ядерными боеголовками. Главные цели таких кораблей – военные базы и города противника.

ПЛАТ ( Подводная лодка атомная торпедная ). Такие лодки еще называют многоцелевыми. Их предназначение: уничтожение кораблей, других подлодок, тактических целей на земле и сбор разведданных.

ТРПКСН ( Тяжёлый ракетный подводный крейсер стратегического назначения ) — класс атомных подводных лодок, вооружённых баллистическими ракетами, предназначенных для нанесения ракетных ударов по стратегически важным военно-промышленным объектам противника. От РПКСН отличается бо́льшим водоизмещением и размерами.

ПЛАРК ( Подводная лодка атомная с ракетами крылатыми ). Концепция ПЛАРК перекликается с многоцелевыми АПЛ. Субмарины типа ПЛАРК, правда, крупней – они представляют собой большие плавучие подводные платформы с высокоточным оружием.

Ну что ж, а на этом наш небольшой экскурс в устройство АПЛ подходит к концу. Если было интересно — ставь лайк, этим ты поддержишь канал на начальном этапе

Источник

Типы корпусов

Подводные лодки, где корпус выполняет две эти задачи, называли однокорпусными. Цистерна главного балласта находилась внутри корпуса, что снижало полезный объем внутри и требовало максимальной прочности стенок. Лодка подобной конструкции выигрывает в весе, в необходимой мощности двигателя и в характеристиках маневренности.

Подводные лодки с полуторным корпусом оснащены прочным корпусом, который частично закрыт более легким. Цистерну главного балласта здесь вынесли наружу. Она находится между двумя корпусами. Среди плюсов – отличная маневренность и быстрая скорость погружения. Минусы – мало места внутри, малое время автономной работы.

Классические двухкорпусные лодки оснащаются прочным корпусом, который на всей своей протяженности закрыт легким корпусом. Главный балласт находится в промежутке между корпусами. Лодка обладает большой надежностью, временем автономной работы, большим внутренним объемом. Среди минусов – длительный процесс погружения, крупные размеры, сложность систем заполнения балластных цистерн.

Современные подходы к строительству подводных лодок диктуют оптимальные формы корпусов. Эволюция формы очень тесно связана с развитием систем двигателей. Изначально в приоритете были лодки для надводного перемещения с возможностью кратковременного погружения для решения боевых задач. Корпус тех субмарин имел классическую форму с заостренной носовой частью. Гидродинамическое сопротивление было очень высоким, но тогда оно не играло особой роли.

Современные лодки имеют значительно большую автономность и скорость хода, поэтому инженерам приходится снижать его – корпус делают в форме капли. Это оптимальная форма для движения под водой.

Цены на изделие

Погружение и всплытие

Основная статья: Система погружения и всплытия

По закону Архимеда, чтобы тело полностью погрузилось в воду, его вес должен равняться весу вытесненной им воды. Для погружения ПЛ принимает балласт — воду — в цистерны. Для всплытия балласт продувается: вода вытесняется из цистерн сжатым воздухом. Когда лодка полностью погружена, она меняет глубину с помощью рулей. Прием или откачка балласта после этого производится только для уравновешивания.

Цистерны главного балласта (ЦГБ)

Заполнением ЦГБ погашается основной запас ПЛ, и обеспечивается нормальное погружение. Чтобы лучше контролировать погружение, ЦГБ разбиты на группы: носовую, кормовую и среднюю, которые можно заполнять или продувать независимо или одновременно.

Как правило, балласт ПЛ рассчитывается так, чтобы с заполненными концевыми группами лодка плавала «под рубку» — в позиционном положении. При нормальном (не срочном) погружении сначала заполняются концевые группы, проверяется герметичность корпуса и посадка, затем заполняется средняя группа. При нормальном всплытии средняя группа продувается первой.

В надводном положении лодка плавает с открытыми кингстонами и аварийными захлопками. Клапаны вентиляции закрыты. Лодку удерживает на поверхности подушка воздуха в ЦГБ. Достаточно открыть КВ, и подпирающая вода вытеснит воздух — лодка начнет погружаться.

По окончании погружения КВ закрываются. В нормальном режиме под водой лодка плавает с открытыми кингстонами и аварийными захлопками. Перед всплытием АЗ закрываются, в цистерны подается воздух. При нормальном всплытии после подачи заданного количества воздуха кингстоны также закрываются, чтобы избежать перерасхода воздуха.

Выпускаемая и проектируемая техника

Особенности конструкции подводного ракетоносца проекта 941

Для непосвященных, лодка представляет собой огромную стальную сигару китообразной формы

Однако для специалистов особое внимание вызывают не столько размеры корабля, сколько его компоновка. Субмарина имеет двухкорпусную схему. За внешней оболочкой легкого корпуса, изготовленного из стали, находится сдвоенный основной прочный корпус

Другими словами – внутри лодки имеется два отдельных корпуса, расположенных параллельно друг другу по схеме катамаран. Прочные корпуса изготовлены из титанового сплава. Торпедный отсек, центральный пост и кормовой механический отсеки на корабле помещены в закрытые отсеки, капсулы

За внешней оболочкой легкого корпуса, изготовленного из стали, находится сдвоенный основной прочный корпус. Другими словами – внутри лодки имеется два отдельных корпуса, расположенных параллельно друг другу по схеме катамаран. Прочные корпуса изготовлены из титанового сплава. Торпедный отсек, центральный пост и кормовой механический отсеки на корабле помещены в закрытые отсеки, капсулы.

Пространство между двумя прочными корпусами заполнено шахтными пусковыми установками в количестве 20 штук. Боевая рубка смещена к хвостовой части лодки. Вся передняя палуба представляет собой одну большую стартовую площадку. Такое расположение пусковых установок предполагает возможность одновременного пуска всего боезапаса. При этом пуск ракет должен осуществляться с минимальным временным интервалом. Советский ракетоносец способен осуществлять пуски ракет из надводного и из подводного положения. Рабочая глубина погружения для осуществления пуска составляет 55 метров.

Корабль имеет 19 отсеков, каждый из которых имеет сообщение с другими. В легком корпусе носовой части лодки установлены горизонтальные рули. Боевая рубка имеет усиленную конструкцию, специально рассчитанную на экстренное всплытие корабля в условиях наличия сплошного ледового щита на поверхности. Повышенная прочность является основной отличительной особенностью советских ракетоносцев III поколения. Если американские АПЛ типа «Огайо» строились для патрулирования в чистых водах Атлантики и Тихого океана, то советские подводные лодки главным образом действовали в акватории Северного Ледовитого океана, поэтому и конструкция корабля создавалась с запасом прочности, способным преодолевать сопротивление ледового панциря 2-х метровой толщины.

Сердцем атомохода является два ядерных реактора ОК-650ВВ суммарной мощностью 380 МВт. В движение субмарина приводится уже посредством работы двух турбин мощностью 45-50 тыс. л/с каждая. Такой огромный корабль имел и соответствующего размера гребные винты – 5,5 м в диаметре. В качестве резервных двигателей на лодке были установлены два дизель-генератора мощностью 800Вт.

Атомный ракетоносец в надводном положении мог развивать скорость хода 12 узлов. Под водой субмарина водоизмещением уже в 50 тыс. тонн могла двигаться со скоростью 25 узлов. Рабочая глубина погружения составляла 400 м. При этом лодка имела некоторый запас критической глубины погружения, составляющие еще дополнительные 100 м.

Кораблем таких больших размеров и с такими ТТХ управлял экипаж численностью 160 человек. Их этого числа треть приходилась на офицерский состав. Внутренние жилые помещения на подводной лодке были оборудованы всем необходимым для длительного и комфортного проживания. Офицеры и мичманы обитали в 2-х и 4-х местных комфортабельных каютах. Матросский и старшинский состав проживали в специально оборудованных кубриках. Все жилые помещения на лодке обслуживались системой кондиционирования воздуха. Во время длительных походов экипаж корабля, свободный от боевой смены, мог проводить время в спортивном зале, посещать кинотеатр и библиотеку. Следует отметить, автономность корабля превышала все существующие до этого времени нормативы — 180 суток.

Отрывок, характеризующий Browning M1921

Все смущение и неловкость Пьера, при удалении Наташи, мгновенно исчезли и заменились взволнованным оживлением. Он быстро придвинул кресло совсем близко к княжне Марье. – Да, я и хотел сказать вам, – сказал он, отвечая, как на слова, на ее взгляд. – Княжна, помогите мне. Что мне делать? Могу я надеяться? Княжна, друг мой, выслушайте меня. Я все знаю. Я знаю, что я не стою ее; я знаю, что теперь невозможно говорить об этом. Но я хочу быть братом ей. Нет, я не хочу.. я не могу… Он остановился и потер себе лицо и глаза руками. – Ну, вот, – продолжал он, видимо сделав усилие над собой, чтобы говорить связно. – Я не знаю, с каких пор я люблю ее. Но я одну только ее, одну любил во всю мою жизнь и люблю так, что без нее не могу себе представить жизни. Просить руки ее теперь я не решаюсь; но мысль о том, что, может быть, она могла бы быть моею и что я упущу эту возможность… возможность… ужасна. Скажите, могу я надеяться? Скажите, что мне делать? Милая княжна, – сказал он, помолчав немного и тронув ее за руку, так как она не отвечала. – Я думаю о том, что вы мне сказали, – отвечала княжна Марья. – Вот что я скажу вам. Вы правы, что теперь говорить ей об любви… – Княжна остановилась. Она хотела сказать: говорить ей о любви теперь невозможно; но она остановилась, потому что она третий день видела по вдруг переменившейся Наташе, что не только Наташа не оскорбилась бы, если б ей Пьер высказал свою любовь, но что она одного только этого и желала. – Говорить ей теперь… нельзя, – все таки сказала княжна Марья. – Но что же мне делать? – Поручите это мне, – сказала княжна Марья. – Я знаю… Пьер смотрел в глаза княжне Марье. – Ну, ну… – говорил он. – Я знаю, что она любит… полюбит вас, – поправилась княжна Марья. Не успела она сказать эти слова, как Пьер вскочил и с испуганным лицом схватил за руку княжну Марью. – Отчего вы думаете? Вы думаете, что я могу надеяться? Вы думаете?! – Да, думаю, – улыбаясь, сказала княжна Марья. – Напишите родителям. И поручите мне. Я скажу ей, когда будет можно. Я желаю этого. И сердце мое чувствует, что это будет. – Нет, это не может быть! Как я счастлив! Но это не может быть… Как я счастлив! Нет, не может быть! – говорил Пьер, целуя руки княжны Марьи. – Вы поезжайте в Петербург; это лучше. А я напишу вам, – сказала она. – В Петербург? Ехать? Хорошо, да, ехать. Но завтра я могу приехать к вам? На другой день Пьер приехал проститься. Наташа была менее оживлена, чем в прежние дни; но в этот день, иногда взглянув ей в глаза, Пьер чувствовал, что он исчезает, что ни его, ни ее нет больше, а есть одно чувство счастья. «Неужели? Нет, не может быть», – говорил он себе при каждом ее взгляде, жесте, слове, наполнявших его душу радостью. Когда он, прощаясь с нею, взял ее тонкую, худую руку, он невольно несколько дольше удержал ее в своей. «Неужели эта рука, это лицо, эти глаза, все это чуждое мне сокровище женской прелести, неужели это все будет вечно мое, привычное, такое же, каким я сам для себя? Нет, это невозможно!..» – Прощайте, граф, – сказала она ему громко. – Я очень буду ждать вас, – прибавила она шепотом. И эти простые слова, взгляд и выражение лица, сопровождавшие их, в продолжение двух месяцев составляли предмет неистощимых воспоминаний, объяснений и счастливых мечтаний Пьера. «Я очень буду ждать вас… Да, да, как она сказала? Да, я очень буду ждать вас. Ах, как я счастлив! Что ж это такое, как я счастлив!» – говорил себе Пьер.

Культура и спорт

Как работает атомная подводная лодка

Дата
Категория: Транспорт

Атомные подлодки и прочие суда с ядерными энергоустановками используют радиоактивное топливо — главным образом уран — для превращения воды в пар. Полученный пар вращает турбогенераторы, а те производят электроэнергию для движения судна и питания различного бортового оборудования.

Радиоактивные материалы, подобные урану, выделяют тепловую энергию в процессе ядерного распада, когда неустойчивое ядро атома расщепляется на две части. При этом выделяется огромное количество энергии. На атомной подлодке такой процесс осуществляется в толстостенном реакторе, который непрерывно охлаждается проточной водой, чтобы избежать перегрева, а то и расплавления стенок. Ядерное топливо пользуется особой популярностью у военных на подлодках и авианосцах благодаря своей необычайной эффективности. На одном куске урана размером с мяч для гольфа подлодка может семь раз обогнуть земной шар. Однако ядерная энергия таит в себе опасность не только для экипажа, который может пострадать, если на борту произойдет радиоактивный выброс. В этой энергии заложена потенциальная угроза всей жизни в море, которая может быть отравлена радиоактивными отходами.

Принципиальная схема машинного отсека с ядерным реактором

В типичном двигателе с ядерным реактором (слева) охлажденная вода под давлением попадает внутрь корпуса реактора, содержащего ядерное топливо. Нагретая вода выходит из реактора и используется для превращения другой воды в пар, а затем, остывая, вновь возвращается в реактор. Пар вращает лопасти турбинного двигателя. Редуктор переводит быстрое вращение вала турбины в более медленное вращение вала электродвигателя. Вал электродвигателя при помощи механизма сцепления соединяется с гребным валом. Кроме того, что электродвигатель передает вращение гребному валу, он вырабатывает электроэнергию, которая запасасется в бортовых аккумуляторах.

Ядерная реакция

В полости реактора атомное ядро, состоящее из протонов и нейтронов, подвергается удару свободного нейтрона (рисунок ниже). От удара ядро расщепляется, и при этом, в частности, освобождаются нейтроны, которые бомбардируют другие атомы. Так возникает цепная реакция деления ядер. При этом освобождается огромное количество тепловой энергии, то есть тепла.

Атомная подлодка курсирует вдоль побережья в надводном положении. Таким кораблям надо пополнять топливо лишь один раз в два-три года.

Группа управления в боевой рубке наблюдает за прилегающей акваторией в перископ. Радиолокатор, гидролокатор, средства радиосвязи и фотокамеры со сканирующей системой также помогают вождению этого судна.

Железнодорожный транспорт

История

Начало разработки

Отправка 80-футовых катеров фирмы Элко (англ.)русск. (тип А-3) из Нью-Йорка в СССР

В послевоенные годы в Военно-морском флоте СССР появился первый основной тип торпедного катера — большой ТКА проекта 183. Разработка этого судна была поручена коллектву Особого конструкторского бюро НКВД (ОКБ-5), штаб которого располагался первоначально на территории судостроительного завода № 5. Главным конструктором был назначен Павел Густавович Гойнкис. В разработке были учтены опыт создания и использования поставленных по ленд-лизу американских катеров типов «Воспер», «Элько» и «Хиггинс».

Физические размеры и скоростные качества

В соответствии с проектом эти катера должны были являться «большими, безреданными, полуглиссирующими, с остроскулыми обводами корпуса». Корпус изготавливался из древесины, сами катера оснащались бронированной рубкой и мостиком (толщина брони 7 мм). Полное водоизмещение составляло 66,5 т. Четырёхвальная дизельная энергетическая установка из отечественных двигателей типа М-50Ф (возможна была замена на модификации М-50Ф-1 и М-50ФТК) обеспечивала мощность 4800 л. с. и позволяла развивать скорость до 43-44 узлов (крейсерская скорость 33 узла). Дальность плавания зависела от скорости: при 33 узлах составляла 600 миль, при 14 узлах — 1000 миль. Запас топлива составлял 10,3 т. Для облегчения прохождения по внутренним водным путям мачта катера была сделана заваливающейся, что значительно уменьшало его габаритную высоту.

Вооружение

Вооружение катера включало два 533-мм однотрубных палубных торпедных аппарата класса ТТКА-53М. Оба располагались побортно под углом 3° к диаметральной плоскости. Также были установлены две спаренные 25-мм автоматические зенитные установки типа 2М-3 с боезапасом в 2000 выстрелов. Помимо этого, вперегруз на катер могли браться до 8 глубинных бомб ББ-1, до 6 морских мин КБ-3 и от 8 до 18 мин (вместо торпед) АМД-500. В состав радиовооружения входили РЛС «Зарница», станция опознавания «Факел-М» и две радиостанции. Для отвлечения противника устанавливалась дымовая аппаратура ДА-7 и 4 дымовые шашки МДШ. В навигационное вооружение входили приборы «Гиря», КГМК-4 (или ДКГМК-3), «Рейс-55» и авторулевой «Зубатка».

Строительство и модификации

В ходе государственных испытаний было выявлено много замечаний, но катера строились большой серией с 1952 по 1960 год. По оценкам моряков, катера были удачными и даже стали базовыми при разработке ракетного катера проекта 183-Р. Головной катер был сдан ВМФ в 1949 году, с этого года и вплоть до 1960 строились катера на заводах: № 5 в Ленинграде, № 460 в Сосновке и № 602 во Владивостоке. Итого было выпущено более 420 экземпляров.

На базе проекта «Большевик» были построены несколько модифицированных кораблей.

  • На катере проекта 183-Т был испытан дополнительный газотурбинный форсажный двигатель мощностью 4000 л. с., который позволял развивать скорость до 50 узлов. В 1955—1957 годах в Ленинграде по откорректированному проекту построили 25 таких катеров.
  • В 1958 году был построен опытный катер проекта 183-У, вооружённый четырьмя торпедными аппаратами, а в составе его энергоустановки использовались новые быстроходные дизельные двигатели. Полное водоизмещение катера достигало 92 тонн. Проект, однако, был закрыт, хотя и разрабатывались два его дальнейших варианта развития: 183-ТУ (с форсажной газовой турбиной) и 183-Т2 (с маршевой ГТУ и дополнительным 25-мм зенитным автоматом).
  • Был подготовлен также штабной проект катера 183-Ш.
  • Катер проекта 183-А был оснащён усиленной арктилитовой обшивкой (арктилит — это аналог бакелизированной фанеры с запрессованной металлической проволокой).
  • Катер проекта 199 был классифицирован как «охотник за подлодками» и вошёл в состав пограничных войск. Всего было построено 52 экземпляра.
  • Для обучения войск выпускался катер 183-Ц — радиоуправляемая учебная мишень.
  • В число нереализованных проектов вошли проект 183-Я2 и 183-Я3 с более лёгкими дизельными двигателями М503 (цифра в конце наименования катера класса 183-Я указывает количество таких дизелей). Водоизмещение первого судна составляло бы 88 тонн, а второго — 110 тонн. Вооружение было бы аналогично катеру 183-У.

Наши дни

К концу 1980-х годов все катера, кроме некоторых модификаций, были списаны. В течение всего срока службы они принимали активное участие в боевой подготовке и зарекомендовали себя с самой лучшей стороны.

Когда появились первые торпеды

Торпеда или как её называли в то время – самодвижущаяся морская мина мина, была придумала сразу двумя учеными, находящимся в разных частях мира, не имеющим друг к другу никакого отношения. Произошло это практически в одно и то же время.

В 1868 году Уайтхед представил миру свою схему постройки торпеды. В тот же год патент на использование этой схемы приобретает Австро-Венгрия и становится первой страной, обладающей данной боевой техникой.

В 1873 году Уайтхед предложил приобрести схему российскому флоту. После испытаний торпеды Александровского, 1874 году было принято решение, приобрести боевые снаряды именно Уайтхеда, ведь модернизированная разработка нашего соотечественника значительно уступала по техническим и боевым характеристикам. Такая торпеда значительно увеличивала свое свойство плыть строго в одном направлении, не меняя курса, благодаря маятникам, а скорость торпеды увеличилась практически в 2 раза.

Таким образом, Россия стала лишь шестым по счету обладателем торпеды, после Великобритании, Франции, Германии и Италии. Ограничением для покупки торпеды Уайтхед выдвинул лишь одно – хранить схему постройки снаряда втайне от государств не пожелавших купить ее.

Уже в 1877 году торпеды Уайтхеда были впервые использованы в бою.

Мрачная пещерная бабочка

Результат

«Оружие Судного дня»

Изначально «Белгород» строился по проекту 949А «Антей» (разработчик — ЦКБ МТ «Рубин»). Закладка субмарины состоялась 24 июля 1992 года в Северодвинске. Спустя два года из-за нехватки финансирования строительство подлодки было законсервировано. И только в 2012 году командование ВМФ приняло решение перезаложить АПЛ по проекту 09852.

Также по теме

«Новое качество ВМФ»: на что будут способны новейшие атомные подлодки России

В 2019 году Военно-морской флот России получит две атомные подводные лодки. Об этом заявил министр обороны РФ Сергей Шойгу. Речь идёт…

Основатель портала Military Russia Дмитрий Корнев считает, что «Белгород» будет в большей мере выполнять исследовательские задачи, которые позволят наладить процесс эксплуатации «Посейдона». Боевыми носителями беспилотника, по мнению эксперта, станут АПЛ проекта 09851.

«Белгород» является долгостроем, но, учитывая весь комплекс проведённых работ, это совершенно новый тип АПЛ. Помимо этого корабля, носителем «Посейдона» станет подлодка проекта 09851 «Хабаровск», заложенная в 2014 году. Как ожидается, она будет спущена на воду весной 2020 года и войдёт в строй в 2022 году. Ещё две лодки «Севмаш» построит, видимо, по тому же проекту (09851)», — рассказал Корнев.

Таким образом, как полагает эксперт, в общей сложности ВМФ получит четыре АПЛ — носителя «Посейдона». Две подлодки будут нести боевое дежурство на Северном флоте, две — на Тихоокеанском флоте. Каждая субмарина будет вооружена шестью — восемью «Посейдонами».

«По официальной информации, «Посейдон» предназначен для поражения авианосных группировок, береговых укреплений и военно-морской инфраструктуры противника. Удары могут осуществляться как ядерными, так и неядерными боеприпасами. Кроме того, взрыв «Посейдона» вблизи побережья может вызывать гигантские цунами. Учитывая его разрушительную мощь, это оружие Судного дня», — заявил RT военный эксперт Юрий Кнутов.

В западных СМИ господствует точка зрения, что создание «Посейдона» является свидетельством «агрессивной» модернизации стратегических сил РФ. В частности, об этом говорится в статье издания The Washington Free Beacon от 8 сентября 2015 года. Это одна из первых публикаций в зарубежной прессе, посвящённая российскому подводному дрону.

  • Графическое изображение подводной лодки «Белгород»

Со ссылкой на источники в Пентагоне в материале утверждается, что Москва разрабатывает беспилотник, чтобы иметь возможность «взрывать ключевые порты», которые используют ВМС США. В статье упоминается военно-морская база Кингс-Бей (штат Джорджия), где дислоцированы стратегические подводные лодки типа Ohio, и станция технического обслуживания крупных боевых кораблей Пьюджет-Саунд (штат Вашингтон).

Издание приводит мнение бывшего аналитика ЦРУ Джека Каравелли, который назвал проект ядерного беспилотника РФ «попыткой нанести катастрофический ущерб военно-морским объектам США или Европы или прибрежным городам».

В России впервые о ядерном беспилотном аппарате стало известно из презентации, которая демонстрировалась 9 ноября 2015 года во время совещания президента РФ Владимира Путина с руководством оборонно-промышленного комплекса (ОПК). 1 марта 2018 года в послании Федеральному собранию глава государства сообщил о завершении разработки уникальной океанской системы, которая по результатам интернет-голосования получила название «Посейдон».

Как заявил Владимир Путин, ядерный дрон способен двигаться на глубине в несколько сотен метров «со скоростью, кратно превышающей скорость подводных лодок, самых современных торпед и всех видов надводных кораблей». Помимо этого, аппарат отличается малошумностью и высокой манёвренностью. По словам президента, он «практически неуязвим».

  • Подводный аппарат «Посейдон»

«В декабре 2017 года полностью завершён многолетний цикл испытаний инновационной ядерной энергоустановки для оснащения этого автономного необитаемого аппарата. Ядерная установка имеет уникально малые габариты и при этом сверхвысокую энерговооружённость. При объёме в 100 раз меньше, чем у установок современных атомных подводных лодок, имеет большую мощность и в 200 раз меньшее время выхода на боевой режим, то есть на максимальную мощность», — сказал Путин.

Корпус

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector