Ракетные двигатели — что да как. анализ с той стороны
Содержание:
- Исторические факты
- Сфера применения
- Примечания
- Электрические ракетные двигатели
- Государственное устройство Бразилии
- Рекомендации
- Принцип работы турбовентиляторного двигателя
- Турбореактивный двигатель — плюсы и минусы
- Плазменные ракетные двигатели
- Двухконтурный РД
- Литература
- Твердотопливные ракеты: топливная смесь
- Системы видеонаблюдения
- Совместимое снаряжение
- Реактивные двигатели в космосе
- Из истории данного вопроса
- Недостатки реактивного двигателя
- Ссылки
- Краткие технические характеристики
- Здравствуйте!
Исторические факты
Идею использования реактивной тяги, которая позволила бы преодолеть силу притяжения Земли, выдвинул в 1903 году феномен российской науки – Циолковский. Он опубликовал целое исследование на данную тему, но оно не было воспринято серьезно. Константин Эдуардович, пережив смену политического строя, потратил годы трудов, чтобы доказать всем свою правоту.
Сегодня очень много слухов о том, что первым в данном вопросе был революционер Кибальчич. Но завещание этого человека к моменту публикации трудов Циолковского было погребено вместе с Кибальчичем. Кроме того, это был не полноценный труд, а лишь эскизы и наброски – революционер не смог подвести надежную базу под теоретические выкладки в своих работах.
Сфера применения
Использование ПВРД на пилотируемых самолетах нецелесообразно, ведь для их запуска нужны дополнительные двигатели. Намного проще сразу установить, например, ТРД. Именно поэтому их применение сводится к установке на крылатые ракеты, летающие мишени и непилотируемые самолеты, летающие со скоростью в пределах от 2 до 5М. В основном это «одноразовые» двигатели, что вполне логично, учитывая их невысокую стоимость и простую конструкцию. Запуск аппаратов с ПВРД осуществляется за счет их разгона до рабочей скорости с помощью самолетов-носителей или ракетных ускорителей.
Гиперзвуковые ПВРД планируется использовать на космических аппаратах, но пока это только теория.
Несмотря на то, что использование ПВРД в настоящее время ограничено, постоянно ведутся работы по улучшению их рабочих характеристик и созданию новых моделей.
Последняя разработка является двигатель Sabre частной фирмы Reaction Engines.
Суть данного двигателя в том, что традиционные двигатели, которые сегодня применяются в авиации, для полета на гипер скоростях требуют спецрезервуаров с жидким кислородом, если самолет развивает в полете скорость более 3000 км/ч. Обыкновенный воздух на таких скоростях нагревается до очень высоких температур, порядка 1000 градусов по Цельсию, что резко понижает термическое КПД. Особенность двигателя Sabre в том, что позволяет применять атмосферный воздух вместо жидкого кислорода. Когда воздух проходит сквозь двигатель, он сжимается и разогревается, в это время он попадает в холодильник, который оснащен целой системой трубок, которые наполняются гелием эти трубки, гелий охлаждает воздух до необходимой температуры. У двигателя Sabre есть одна особенность. Он в состоянии работать в 2-х режимах: как реактивный двигатель и как ракетный двигатель. Устанавливаться он будет на самолете Skylon. Данная аппарат сможет разогнаться в атмосфере в 5 раз быстрее скорости звука и в 25 раз в открытом космическом пространстве.
Skylon готовиться как космический самолет, способный выводить спутники на низкую орбиту. При этом это будет очень выгодная технология. По словам Алана Бонда, являющегося основателем компании, суммы, которые требуются для запуска спутников и других похожих миссий, могут уменьшиться сразу на 95% в том случае, если будет налажено коммерческое производство двигателей Sabre.
Примечания
Электрические ракетные двигатели
В электрических ракетных двигателях (ЭРД) в качестве источника энергии для создания тяги используется электрическая энергия. Удельный импульс электрических ракетных двигателей может достигать 10—210 км/с.
В зависимости от способа преобразования электрической энергии в кинетическую энергию реактивной струи, различают электротермические ракетные двигатели, электростатические (ионные) ракетные двигатели и электромагнитные ракетные двигатели.
Высокие значения удельного импульса ЭРД позволяет ему расходовать (в сравнении с химическими двигателями) малое количество рабочего тела на единицу тяги, но при этом возникает проблема большого количества электроэнергии, необходимой для создания тяги. Мощность, необходимая для создания единицы тяги ракетного двигателя (без учёта потерь), определяется формулой:
Здесь P{\displaystyle P} — удельная мощность (ватт/ньютон тяги); I{\displaystyle I} — удельный импульс (м/c).
Таким образом, чем выше удельный импульс, тем меньше требуется вещества, и больше — энергии, для создания единицы тяги. Поскольку мощность источников электроэнергии на космических аппаратах весьма ограничена, это ограничивает и тягу, которую могут развить ЭРД. Самым приемлемым для ЭРД источником электроэнергии в космосе в настоящее время являются солнечные батареи, не потребляющие топлива, и обладающие достаточно высокой удельной мощностью (по сравнению с другими источниками электроэнергии).
Низкая тяга (не превышающая единиц ньютонов для самых мощных из современных электрических ракетных двигателей) и неработоспособность в атмосфере, на высотах менее 100 км сужают область применения электрических ракетных двигателей.
Государственное устройство Бразилии
Согласно Конституции 1988 года, Бразилия – это федеративная республика. Ее глава — Президент, которого избирают на 4 года. Исполнительная власть принадлежит Президенту, Вице-президенту и Кабинету министров в составе 15 министров с председателем.
Двухпалатный бразильский парламент называется Национальный Конгресс, он состоит из Сената (81 сенаторов) и Палаты депутатов (513 депутатов).
Основные политические партии – «Партия трудящихся», «Партия бразильского демократического движения», «Бразильская социал-демократическая партия», «Демократическая партия», «Прогрессистская партия» и «Партия республики».
Административно страна делится на 26 штатов и один федеральный округ с центром в Бразилиа.
Рекомендации
Принцип работы турбовентиляторного двигателя
Турбовентиляторный двигатель технологически очень сложное изделие, но работающее по довольно простому и понятному принципу. Расскажем, о его устройстве и какие процессы и как в нём протекают. Сначала разберёмся с терминами. Слово турбовентиляторный произошло от английского turbofan, причём англоязычный мир имеет под словом turbofan абсолютно любой двухконтурный турбореактивный двигатель.
При этом они разделяют их с низкой и высокой степенью двухконтурности соответственно, а степень двухконтурности – это параметр, который показывает отношение расхода массы воздуха через внешний контур к расходу во внутреннем. Итак, неотъемлемое свойство турбовентиляторного двигателя высокая степень двухконтурности – для современных изделий от 4 и выше.
Чтобы как можно больше воздуха расходовать через внешний контур используется вентилятор большого диаметра, энергия для его вращения появляется за счёт работы внутреннего контура и в этом заключается суть работы турбовентиляторного двигателя, где с помощью вентилятора создаётся около 80% всей тяги.
Рассмотрим типичное устройство и как это работает. Турбовентиляторный двигатель имеет внешний и внутренний контуры. На входе в двигатель имеется вентилятор большого диаметра, который подаёт воздух в оба контура, устройство внутреннего контура подобно обычному турбореактивному двигателю, который состоит из компрессора, турбины, камеры сгорания и реактивного сопла.
Сначала воздух, немного увеличив давление, после вентилятора попадает в компрессор низкого давления, затем он попадает в компрессор высокого давления, который вращается в несколько раз быстрее. После прохождения обоих компрессоров, воздух, сжатый более чем в 30 раз и сильно нагретый от высокого давления попадает в камеру сгорания. Здесь он смешивается с топливом, которое подаётся с помощью форсунок и поджигается. Далее раскалённый газ с температурой около 1600 градусов и выше начинает совершать полезную работу.
Сначала он попадает в турбину высокого давления, которая заставляет вращаться, находящийся с ней на одном валу компрессор высокого давления. Затем, потратив часть энергии и снизив свою температуру, раскаленный газ попадает в турбину низкого давления, которая находится на одном валу с компрессором и вентилятором. Потеряв большую часть энергии, раскалённый газ попадает в сопло и совершает последнее полезное действие – создаёт реактивную тягу. Таков принцип работы внутреннего контура, который создаёт лишь 20% всей тяги вентиляторного двигателя.
Принцип работы внешнего контура. Турбина низкого давления, находящаяся на одном валу с вентилятором, заставляет его вращаться, воздух, пройдя через лопатки вентилятора и немного увеличив своё давление, проходит через спрямляющий аппарат, его неподвижные лопатки поворачивают поток воздуха в осевом направлении, заодно повышая его давление. Затем воздушный поток попадает в сопло, где создаётся реактивная тяга.
Вот и весь принцип работы вентиляторного двигателя. Разумеется, каждый конкретный двигатель имеет свои особенности и различия, больше всего они касаются устройства внутреннего контура, но схема исполнения всегда остаётся плюс минус одинаковой. Обычно разница заключается в количестве ступеней компрессора и турбины, также помимо двухвальной схемы используется и трёхвальная, когда вентилятор и компрессор низкого давления больше не связаны, в таком случае используется промежуточная турбина, которая вращает только компрессор низкого давления на отдельном валу.
Ещё один способ увеличения эффективности конструкции – это установка редуктора на валу, который соединяет турбину низкого давления и вентилятор, такое решение позволяет им работать на оптимальных для себя режимах. Устройство внешнего контура также может иметь заметные отличия. При относительно небольшой степени двухконтурности в двигателе может использоваться смешение потоков, где газ из обоих контуров попадает в единую камеру сгорания и покидает через общее сопло.
Но, такая схема не подходит для более габаритных двигателей с высокой степенью двухконтурности, так как масса двигателя значительно вырастет, поэтому практически во всех вентиляторных двигателях потоки не смешиваются и длина внешнего контура всегда меньше внутреннего. Вот собственно и всё – таков принцип и способы повышения эффективности работы турбовентиляторного двигателя.
Источник
Турбореактивный двигатель — плюсы и минусы
Плазменные ракетные двигатели
Плазменный двигатель — Электрический ракетный двигатель, рабочее тело которого приобретает ускорение, находясь в состоянии плазмы. Плазменные двигатели различной конструкции строились и тестировались начиная с 60-х годов, однако на начало 21 века существует лишь один проект плазменного двигателя — VASIMR, который реализуется на коммерческой основе. VASIMR пока что прошел лишь стендовые испытания, летные запланированы на 2016 год. Другие типы плазменных двигателей, в частности СПД и ДАС (двигатели с анодным слоем), очень к ним близкие, имеют совершенно другие принципы работы. Потенциал плазменных двигателей высок, однако, в ближайшем будущем единственным его применением будет корректировка орбиты МКС и других околоземных спутников.
Двухконтурный РД
Эти агрегаты имеют массу преимуществ перед турбореактивными. Например, значительно меньший расход топлива при той же мощности.
Но сам двигатель имеет более сложную конструкцию и больший вес.
Да и принцип работы двухконтурного реактивного двигателя немного другой. Воздух, захватываемый турбиной, частично сжимается и подается в первый контур на компрессор и на второй – к неподвижным лопастям. Турбина при этом работает в качестве компрессора низкого давления. В первом контуре двигателя воздух сжимается и подогревается, а затем посредством компрессора высокого давления подается в камеру сгорания. Здесь происходит смесь с топливом и воспламенение. Образуются газы, которые подаются на турбину высокого давления, за счет чего и вращаются лопасти турбины, подающие, в свою очередь, вращательное движение на компрессор высокого давления. Затем газы проходят через турбину низкого давления. Последняя приводит в действие вентилятор и, наконец, газы попадают наружу, создавая тягу.
Литература
Твердотопливные ракеты: топливная смесь
Ракетные двигатели на твердом топливе — это первые двигатели, созданные человеком. Они были изобретены сотни лет назад в Китае и используются до сих пор. О красных бликах ракет поется в национальном гимне (написанном в начале 1800-х) — имеются в виду небольшие боевые ракеты на твердом топливе, используемые для доставки бомб или зажигательных устройств. Как видите, такие ракеты существуют уже давненько.
Идея, которая лежит в основе ракеты на твердом топливе, довольно проста. Вам нужно создать нечто, что будет быстро гореть, но не взрываться. Как вы знаете, порох не подходит. Оружейный порох на 75 % состоит из нитрата (селитры), 15 % угля и 10 % серы. В ракетном двигателе взрывы не нужны — нужно, чтобы топливо горело. Можно изменить смесь до 72 % нитрата, 24 % угля и 4 % серы. Вместо пороха вы получите ракетное топливо. Эта смесь будет быстро гореть, но не взорвется, если правильно ее загрузить. Вот типичная схема:
Системы видеонаблюдения
Совместимое снаряжение
Реактивные двигатели в космосе
Как вы уже поняли, наиболее мощным двигателем, способным поднять ракету на высоту во много тысяч километров, являлся именно реактивный двигатель.
Конечно, возникает вопрос: как может работать реактивный двигатель в космосе, в безвоздушном пространстве?
В устройстве ракеты предусмотрен резервуар с кислородом, который смешивается с ракетным топливом и образует необходимую тягу полета ракеты, когда космический корабль покидает атмосферу Земли.
Затем приходит в действие закон сохранения импульса: масса ракеты постепенно уменьшается, сгоревшая смесь топлива и кислорода выбрасывается через сопло в одну сторону, а тело ракеты движется в противоположную.
Из истории данного вопроса
Ракетный двигатель – один из старейших видов двигателя, известных человечеству. Мы не можем точно ответить на вопрос, когда именно была изготовлена первая ракета. Есть предположение, что это сделали еще древние греки (деревянный голубь Архита Тарентского), но большинство историков считает родиной данного изобретения Китай. Это произошло примерно в III столетии нашей эры, вскоре после открытия пороха. Первоначально ракеты использовали для фейерверков и других развлечений. Пороховой ракетный двигатель был достаточно эффективен и прост в изготовлении.
Первая боевая ракета была разработана в 1556 году Конрадом Хаасом, который придумывал различные виды вооружений для императора Фердинанда I. Этого изобретателя можно назвать первым создателем теории ракетных двигателей, также он является автором идеи многоступенчатой ракеты – в трудах Хааса подробно описан механизм работы летательного аппарата, состоящего из двух ракет. Изыскания продолжил поляк Казимир Семенович, живший в середине XVII века. Однако все эти проекты так и остались на бумаге.
Практическое использование ракет началось только в XIX столетии. В 1805 году британский офицер Уильям Конгрив продемонстрировал пороховые ракеты, которые имели небывалую по тем временам мощность. Презентация произвела должное впечатление, и ракеты Конгрива были приняты на вооружение английской армии. Их главным преимуществом, по сравнению со ствольной артиллерией, была высокая мобильность и относительно небольшая стоимость, а основным недостатком – кучность огня, которая оставляла желать лучшего. К концу XIX века широкое распространение получили нарезные орудия, стрелявшие очень точно, поэтому ракеты были сняты с вооружения.
Примерно так использовались ракеты Конгрива. Современная реконструкция
В России данным вопросом занимался генерал Засядко. Он не только усовершенствовал ракеты Конгрива, но и первым предложил использовать их для полета в космос. В 1881 году российский изобретатель Кибальчич создал собственную теорию ракетных двигателей.
Огромный вклад в развитие этого направления техники внес еще один наш соотечественник – Константин Циолковский. Среди его идей жидкостный ракетный двигатель (ЖРД), работающий на смеси кислорода и водорода.
В начале прошлого столетия энтузиасты во многих странах мира занимались созданием жидкостного РД, первым добился успеха американский изобретатель Роберт Годдард. Его ракета, работающая на смеси бензина и жидкого кислорода, успешно стартовала в 1926 году.
Вторая мировая война стала периодом возвращения ракетного оружия. В 1941 году на вооружение Красной армии была принята установка залпового огня БМ-13 – знаменитая «Катюша», а в 1943 – немцы начали использование баллистической Фау-2 с жидкостным ракетным двигателем. Она была разработана под руководством Вернера фон Брауна, который позже возглавил американскую космическую программу. Германией также было освоено производство КР Фау-1 с прямоточными реактивным мотором.
Ракета Фау-2. Немцы называли ее «оружие возмездия». Правда, оно не слишком помогло Гитлеру
В разные годы предпринимались попытки создания ракетных двигателей, работающих за счет энергии ядерного распада (синтеза), но до практического применения подобных силовых установок дело так и не дошло. В 70-е годы в СССР и США началось использование электрических ракетных двигателей. Сегодня они применяются для коррекции орбит и курса космических аппаратов. В 70-е и 80-е годы были эксперименты с плазменными РД, считается, что они имеют хороший потенциал. Большие надежды связывают с ионными ракетными двигателями, использование которых теоретически может значительно ускорить космические аппараты.
Однако пока почти все эти технологии находятся в зачаточном состоянии, и основным транспортным средством покорителей космоса остается старая добрая «химическая» ракета. В настоящее время за титул «самый мощный ракетный двигатель в мире» соревнуется американский F-1, участвовавший в лунном проекте, и советский РД-170/171, который использовался в программе «Энергия-Буран».
Недостатки реактивного двигателя
- Создает сильный шум при работе. При взлете реактивного самолёта создается шум до 120 децибел. Для человеческого уха это значение близко к болевому порогу. Если стоять на расстоянии 100 метров от места взлета космического корабля, можно получить контузию. Ведь уровень шума достигает 150 децибел. Ученым пока не удается подавить шум от реактивного движителя или решить эту проблему иным способом.
- Расходует большой объем топлива. Он невероятно прожорлив. Чтобы вывести на орбиту ракетную систему с исходным весом 3000 тонн, необходима установка пяти таких двигателей. Они придают рабочему телу скорость 3 км/с. При этом высвобождается 10 тонн отработанных газов в секунду. За 4 секунды в камерах без остатка сгорает одна цистерна ракетного топлива.
- Ограниченный ресурс для космических полетов. Все виды топлива, которые применяют для ракет, выделяют ограниченное количество энергии. Этого недостаточно для совершения полетов в пределах Галактики и даже между планетами Солнечной системы. Перспективным направлением считается использование ядерной энергии.
- Большой вес и размер летательных аппаратов. Перед учеными, изучающими космос, стоят колоссальные задачи. Одна из главных – создание летательного аппарата для межпланетных и межзвездных перелетов. Они научились выводить на земную орбиту ракеты, спутники, достигли Луны. Для дальних полетов использовать реактивный двигатель невыгодно и нецелесообразно. Ученые подчитали, что для полета ракеты на Марс, ее стартовый вес должен составлять – 30 000 тонн, а на Юпитер – 250 000 тонн. Соответственно, увеличатся и размеры летательных аппаратов.
- Топливо расходуется быстро. Для длительного полета необходим большой объем энергоносителя. Емкости с горючим составляют значительную часть от массы самолёта или космического корабля.
Ссылки
Краткие технические характеристики
ЭРД характеризуются малым массовым расходом РТ и высокой скоростью истечения ускоренного потока частиц. Нижняя граница скорости истечения примерно совпадает с верхней границей скорости истечения струи и составляет около 3 000 м/с. Верхняя граница теоретически неограничена (в пределах скорости света), однако для перспективных моделей двигателей рассматривается скорость, не превышающая 200 000 м/с. В настоящее время для двигателей различных типов оптимальной считается скорость истечения от 16 000 до 60 000 м/с.
В связи с тем, что процесс ускорения в ЭРД проходит при низком давлении в ускорительном канале (концентрация частиц не превышает 1020 частиц/м³), плотность тяги довольно мала, что ограничивает применение ЭРД: внешнее давление не должно превышать давление в ускорительном канале, а ускорение КА очень мало (десятые или даже сотые g). Исключением из этого правила могут быть ЭДД на малых КА.
Электрическая мощность ЭРД колеблется от сотен ватт до мегаватт. Применяемые в настоящее время на КА ЭРД имеют мощность от 800 до 2 000 Вт.
ЭРД характеризуются КПД — от 30 до 60 %.
Здравствуйте!
Я думаю, что пришла пора прояснить принцип действия всем нам известного «сердца», того самого, о котором я писал в предыдущей статье.
Паровая турбина элетростанции. Типичное устройство расширения.
Основным двигателем реактивной авиации мира является турбореактивный двигатель (ТРД) и именно его принцип работы мы сейчас без труда и лишних ненужных заморочек проясним.
Все мы прилежно учились в школе :-), и знаем, что в физике существует понятие «тепловая машина» (или «тепловой двигатель»). Человек долго подбирался к ее созданию.
Первые образцы приписывают даже Архимеду и потом Леонардо да Винчи. Но по настоящему она вошла в жизнь человека только в конце 60-х годов 18-го века, когда Д. Уатт построил свою паровую машину. Прогресс не остановить и современную жизнь уже невозможно представить без тепловых машин. Это не только тепловые электростанции и электроцентрали (в том числе, кстати и атомные станции), но и миллионы автомобилей различного назначения и, конечно же, мною очень любимые авиационные двигатели.
Теорию работы тепловой машины описывает раздел физики термодинамика. Не углубляясь в ее законы (принцип этого сайта Вам известен, если Вы читали страницу «Сайт об авиации» ), скажу, что тепловой двигатель – это машина для преобразования энергии в механическую работу. Работа — ее так сказать полезная «продукция». Этой энергией обладает используемое внутри машины так называемое рабочее тело, в качестве которого обычно выступает газ (или пар в паровой машине). Получает энергию рабочее тело при сжатии в машине, а полезную механическую работу мы потом будем иметь при последующем его расширении.
Но! Надо понимать, что в работоспособном тепловом двигателе работа, затрачиваемая на сжатие газа должна быть всегда меньше работы, которую газ может совершить при расширении. Иначе никакой полезной «продукции» не будет. То есть вариант «на сколько сжали, на столько же и расширили» (все равно как в автомобильном амортизаторе) нам не подходит. Поэтому для сохранения нужной нам работоспособности газ перед расширением или во время него нужно еще и нагревать, а перед сжатием неплохо бы охладить. В итоге за счет предварительного нагрева энергия расширения значительно повысится и сразу появится ее излишек, который можно использовать для получения необходимой нам механической работы. Вот собственно и весь принцип. На его основе и работает турбореактивный двигатель.
Таким образом любой тепловой двигатель должен иметь устройство для сжатия, нагреватель, устройство для расширения и неплохо бы холодильник. Все это есть у ТРД, соответственно: компрессор, камера сгорания, турбина, а в роли холодильника выступает атмосфера. Рабочее тело – воздух, который попадает в компрессор, там сжимается, далее идет в камеру сгорания, там нагревается, смешивается с продуктами сгорания ( керосина) и потом следует на турбину, вращая ее (а она, в свою очередь компрессор) и расширяясь, тем самым теряет часть энергии. И уже далее расходуется «полезная» энергия. Она превращается в кинетическую, когда газ сильно разгоняется в устройстве под названием реактивное сопло (которое обычно бывает сужающимся) и двигатель получает силу тяги за счет реакции струи. Все :-)… ТРД работает. Неплохо этот процесс показан в коротком ролике. Он без комментариев, но они здесь и не нужны :-). Скажу только, что показанное переднее колесо – это компрессор, далее кольцом вокруг вала – камера сгорания и за ней колесо турбины. Все схематично, но достаточно просто, чтобы понять как работает турбореактивный двигатель…
Более подробно об устройстве ТРД и его разновидностей мы поговорим в следующих статьях.
До встречи…
Р.S. Ролик рекомендую смотреть в большом формате.
Фотография кликабельна.