Невозможные космические объекты, но они существуют в реальности
Содержание:
- Содержание
- Содержание
- Особенности
- Искусственный спутник Земли
- Некоторые положения международных соглашений
- Правовые основы освоения Вселенной
- Из чего состоит наша Вселенная?
- Корабль
- Общее понятие
- Смотрите также:
- Астрофизические параметры и типы галактик
- Космический конус Циолковского
- Источники
- Борьба соседей за воду и землю
- Конструкция китайской орбитальной станции
- Гладкоствольное ружьё Сайга-366 калибр 366 ТКМ
- Доспехи
- История программы «Спектр»
- Колесница с косами
- В каких странах реализуются программы пилотируемых космических полетов?
- Самолет Ан-2 «Кукурузник»: характеристики, фото, видео
- Материалы по теме
- Развитие международного космического права
- Гагарин. Первый в космосе: как это было
- Комментарии:
- Возвращение
- Характеристики основных элементов:
- 7.
- Космонавтика сегодня завтра и всегда
- Хроника событий
Содержание
Содержание
Особенности
Искусственный спутник Земли
По сей день дата запуска «Спутника-1», 4 октября, является началом космической эры человечества. Имя аппарата стало нарицательным, используясь сегодня во многих языках мира.
Запуск «ПС-1» («Простейший Спутник-1») осуществлялся с 5-го научно-исследовательского полигона Министерства обороны СССР «Тюра-Там», которому суждено было получить название «Байконур» в далеком будущем.
Ракета-носитель «Спутник» на базе межконтинентальной баллистической ракеты «Р-7» стала самой известной в истории, отправив в космос множество аппаратов, включая «Восток-1» с Гагариным на борту.
Но это было после. А в 1957 радиолюбители всего мира слушали позывные аппарата с помощью обычной радиолюбительской аппаратуры на расстоянии до 2–3 тысяч километров.
Вопреки общепринятому мнению, «Спутник» не был доступен для наблюдения невооружённым глазом, но его вторая ступень отлично просматривалась в темное время суток наравне со звездами.
Некоторые положения международных соглашений
При экстренной посадке космического средства в результате аварии или другой непредвиденной ситуации страна, где произошла эта посадка, обязана сообщить о происшествии собственникам космического объекта и руководству Организации объединённых наций. Также на это государство возлагается ответственность по проведению мероприятий, обеспечивающих поиск космонавтов.
В своей профессиональной деятельности космонавты всех стран должны оказывать посильную помощь друг другу.
Юрисдикция государства, где была осуществлена регистрация космического корабля и космонавтов, остаётся в силе даже при нахождении космического судна с экипажем над территориями других стран.
Космические объекты и отдельные их части, а также всё их оснащение может находиться в долевой собственности нескольких государств, при этом все собственники несут ответственность за космическую деятельность в размере, пропорциональном их доле.
Все государства мира имеют право осуществлять запуск на орбиты своих космических кораблей, занимая при этом любой участок космического пространства. Также любое государство вправе производить посадку своих объектов на поверхность любых небесных тел: планет, спутников и так далее.
Собственники космических кораблей должны своевременно предоставлять информацию о местоположении их космических объектов и о том, в каком состоянии эти объекты находятся в данный момент (законсервированы или в активном состоянии) генеральному секретарю Организации объединённых наций.
Правовые основы освоения Вселенной
Космическое пространство – это новое и уникальное поле для человеческой деятельности, которое мы только начинаем осваивать. Из-за ряда особенностей, исследования в основном носят международный характер. Поэтому начало космической эры привело к появлению новой отрасли права, предназначенной для регулирования отношений между государствами и организациями в этой специфической сфере деятельности. Сегодня правовой режим регламентируют несколько международных договоров о космическом пространстве, принятых в разное время.
Работы в этом направлении начались еще до запусков на орбиту, в конце 50-х годов. Их инициатором стала Организация Объединенных Наций. Первыми были рассмотрены предложения о мирном использовании космического пространства и запрете на испытания ядерного оружия на орбите.
Правовой режим изучения и освоения космического пространства регламентируют несколько международных договоров, принятых в разное время
Буквально через несколько дней после запуска «Спутника-1» Генассамблея ООН призвала создать инспекцию для обеспечения исключительно мирного использования космического пространства. По данному вопросу была принята специальная резолюция. В 1958 году при ООН появился Комитет (КОПУОС), в задачи которого входило изучение правовых проблем исследований околоземного пространства. Он работает и сегодня, имеет два подкомитета: юридический и научно-технический.
Можно сказать, что в те годы были заложены основы международного космического права, регулирующие деятельность в данной сфере. С трибуны ООН был четко сформулирован главный принцип: космическое пространство и небесные тела свободны для исследования и освоения, и не подлежат присвоению тем или иным государством. Космос должен служить общим интересам человечества.
В 1967 году был подписан Договор о международном режиме использования космического пространства и небесных тел, включая Луну. В 1968 году появилось Соглашение о спасении космонавтов, а в 1972 – Конвенция об ответственности за ущерб, причиненный КА. В 1979 году было подписано Соглашение о деятельности на Луне и других небесных объектах.
В 1982 году была принята конвенция по радиосвязи, которая регулировала вопросы использования радиочастот, а также геостационарной орбиты.
В 80-е годы Комитетом были разработаны несколько международных соглашений, направленных против размещения в космосе противоспутникового оружия. В 2006 году аналогичный документ на рассмотрение ООН внесли Россия и Китай. В 2011 году Генассамблея приняла резолюцию, в которой содержались рекомендации по укреплению доверия между государствами в космической деятельности.
Существующая сегодня договорная база определяет для космического пространства режим, абсолютно отличный от того, что действует в отношении воздушного пространства. Последний находится под суверенитетом государства, над территорией которого он расположен. С космосом другая проблема: нет четкого юридического определения, на какой высоте он начинается. Сегодня существует более тридцати гипотез, определяющих границу между околоземным пространством и атмосферой, но ни одна из них не получила общего или хотя бы подавляющего признания.
Космическое право — очень молодое направление юридической науки, находящееся еще на стадии формирования
В 1979 году СССР предложил в качестве официальной границы космоса считать отметку в сто километров над уровнем моря. Великобритания и США выступили против этой инициативы, заявив, что любая демаркация будет только мешать космическим исследованиям.
Позже несколько экваториальных стран заявили, что геостационарная орбита из-за ее специфического расположения находится под их суверенитетом. Понятно, что подобный месседж не был поддержан международным сообществом.
Из чего состоит наша Вселенная?
Считается, что Вселенная состоит из трех типов вещества: нормальной материи, «темной материи» и «темной энергии». Нормальная материя состоит из атомов, из них же состоят звезды, планеты, люди и все другие видимые объекты в нашей Вселенной. Как ни унизительно это звучит, но нормальная материя почти наверняка составляет наименьшую долю Вселенной, где-то между 1% и 10%. Согласно популярной в настоящее время модели Вселенной 70% материи приходится на темную энергию, 25% – на темную материю и 5% – на нормальную материю.
Однако результаты нового исследования, опубликованного в журнале Astronomy & Astrophysics предполагают, что около 40% всей видимой материи Вселенной – той, что составляет все что мы можем видеть и осязать – обнаружено впервые. Команда ученых из Национального центра научных исследований Франции (CNRS) считает, что наконец-то обнаружила ее – скрытую в галактических нитях космической паутины.
Сегодня наших знаний о Вселенной недостаточно для того, чтобы с уверенностью сказать из чего она состоит.
Корабль
«Восход-2» стал усовершенствованной версией первого корабля, на котором в 1964 году впервые был совершен одновременный полет сразу трех космонавтов: Владимира Комарова, Константина Феоктистова и Бориса Егорова. В кабине было так тесно, что им пришлось лететь без скафандров, и в случае разгерметизации корабля им грозила неминуемая гибель. Вес «Востока-2» составлял почти 6 тонн, диаметр 2,5 метра, а высота почти 4,5 метра. Новый корабль приспособили для полета двух человек и оснастили уникальным надувным шлюзом для выхода в открытый космос «Волга» — там камера надувалась и готова была принять космонавта. Ее внешний диаметр 1,2 метра, внутренний всего 1 метр, а длина – 2,5 метра. При подготовке к посадке камера отстреливалась и корабль приземлялся без нее.
Стоит отметить, что полет «Восхода-2» со шлюзовой камерой и экипажем на борту был рискованным, так как предварительно проверить работу всех систем не удалось. 22 февраля 1965 года, меньше чем за месяц до полета Беляева и Леонова, беспилотный корабль «Космос-57» (копия «Востока-2») во время испытательного полета был взорван из-за ошибочной команды на самоуничтожение. Несмотря на это, Королев (главный конструктор всей программы) и Келдыш (Президент Академии Наук СССР), посоветовавшись с космонавтами, решили не отменять запланированный полет.
Общее понятие
В космическом пространстве существует высокий вакуум с низкой плотностью частиц. Воздух в космосе отсутствует. Из чего состоит космос? Это не пустое пространство, оно содержит:
- газы,
- космическую пыль,
- элементарные частицы (нейтрино, космические лучи),
- электрические, магнитные и гравитационные поля,
- также электромагнитные волны (фотоны).
Абсолютный вакуум, или почти полный, делает пространство прозрачным, и позволяет наблюдать чрезвычайно удаленные объекты, такие как другие галактики. Но туман межзвездной материи также может серьезно затруднить представление о них.
Важно! Понятие пространства не следует отождествлять со Вселенной, которая включает в себя все космические объекты, даже звезды и планеты. Поездки или перевозки в космическом пространстве или через него, называются космическими поездками
Поездки или перевозки в космическом пространстве или через него, называются космическими поездками.
Смотрите также:
Астрофизические параметры и типы галактик
Первые исследования космоса, проведенные в начале XX века, дали обильную почву для размышлений. Обнаруженные в объектив телескопа космические туманности, которых со временем насчитали более тысячи, представляли собой интереснейшие объекты во Вселенной. Длительное время эти светлые пятна на ночном небе считались скоплениями газа, входящими в структуру нашей галактики. Эдвин Хаббл в 1924 году сумел измерить расстояние до скопления звезд, туманностей и сделал сенсационное открытие: эти туманности — ни что иное, как далекие спиралевидные галактики, самостоятельно странствующие в масштабах Вселенной.
Американский астроном впервые предположил, что наша Вселенная – это множество галактик. Исследования космоса в последней четверти XX века, наблюдения, сделанные с помощью космических аппаратов и техники, включая знаменитый телескоп Хаббл, подтвердили эти предположения. Космос безграничен и наш Млечный путь — далеко не самая крупная галактика во Вселенной и к тому же не является ее центром.
Усилиями Эдвина Хаббла мир получил систематизированную классификацию галактик, делящую их на три типа:
- спиральные;
- эллиптические;
- неправильные.
Эллиптические галактики и спиральные являются самыми распространенными типами. К ним относятся наша галактика Млечный Путь, а также соседняя с нами галактика Андромеда и многие другие галактики во Вселенной.
По классификации такие галактики обозначаются латинской буквой E. Все на сегодняшний день известные эллиптические галактики разделены на подгруппы E0-E7. Распределение по подгруппам осуществляется в зависимости от конфигурации: от галактик почти круглой формы (E0, E1 и E2)до сильно растянутых объектов с индексами E6 и E7. Среди эллиптических галактик встречаются карлики и настоящие гиганты, имеющие диаметры в миллионы световых лет.
К спиральным галактикам относятся два подтипа:
- галактики, представленные в виде пересеченной спирали;
- нормальные спирали.
Первый подтип выделяется следующими особенностями. По форме такие галактики напоминают правильную спираль, однако в центре такой спиральной галактики находится перемычка (бар), дающая начало рукавам. Такие перемычки в галактике обычно являются следствием физических центробежных процессов, делящих ядро галактики на две части. Существуют галактики с двумя ядрами, тандем которых и составляет центральный диск. Когда ядра встречаются, перемычка исчезает и галактика становится нормальной, с одним центром. Существует перемычка и в нашей галактике Млечный путь, в одном из рукавов которой находится наша Солнечная система. От Солнца к центру галактики путь по современным оценкам составляет 27 тыс. световых лет. Толщина рукава Ориона Лебедя, в котором пребывает наше Солнце и вместе с ним наша планета, составляет 700 тыс. световых лет.
В соответствии с классификацией спиральные галактики обозначаются латинскими буквами Sb. В зависимости от подгруппы, существуют и другие обозначения спиральных галактик: Dba, Sba и Sbc. Разница между подгруппами определяется длиной бара, его формой и конфигурацией рукавов.
Самый редкий тип — неправильные галактики. Эти вселенские объекты представляют собой крупные скопления звезд и туманностей, не имеющие четкой формы и структуры. В соответствии с классификацией они получили индексы Im и IO. Как правило, у структур первого типа диска нет или он слабо выражен. Нередко у таких галактик можно рассмотреть подобие рукавов. Галактики с индексами IO представляют собой хаотическое скопление звезд, облаков газа и темной материи. Яркими представителям такой группы галактик являются Большое и Малое Магелланово Облако.
Исходя из имеющейся классификации и по результатам исследований, можно с некоторой долей уверенности ответить на вопрос, сколько галактик во Вселенной и какого они типа. Больше всего во Вселенной спиральных галактик. Их более 55 % от общего количества всех вселенских объектов. Эллиптических галактик в два раза меньше — всего 22% от общего числа. Неправильных галактик, аналогичных Большому и Малому Магеллановым Облакам, во Вселенной только 5%. Одни галактики соседствуют с нами и находятся в поле зрения мощнейших телескопов. Другие находятся в самом дальнем пространстве, где преобладает темная материя и в объективе видна больше чернота бескрайнего космоса.
Космический конус Циолковского
Первым идею — выращивать растения в космосе — выдвинул основоположник космонавтики Константин Циолковский. Задолго до начала пилотируемых полетов он заявил, что в будущем растения станут главным источником питания и поддержания атмосферы на космических кораблях. Он придумал и сделал зарисовку, как можно решить проблему невесомости и отсутствия гравитации в условиях космоса.
В этой работе К. Э. Циолковский подробно описал не только, как можно искусственно создать гравитацию для растений, но и продумал, какие это должны быть растения: плодовитые, мелкие, без толстых стволов. По его задумке такие растения смогут обеспечивать колонизаторов космоса биологически активными веществами и микроэлементами, а также регенерировать кислород и воду.
За много десятилетий до полётов в космос Константин Эдуардович понял проблему с которой в будущем столкнулись космонавты — от консервированной и сублимированной пищи многие из них теряли аппетит, начиналась депрессия и ели только потому, что это было необходимо для поддержания сил.
Источники
Борьба соседей за воду и землю
Конструкция китайской орбитальной станции
Впоследствии к базовому модулю будут присоединены два лабораторных модуля «Вэньтянь» и «Мэнтянь». После этого станция будет выглядеть как огромная буква Т. К созданной конструкции будут пристыковываться пилотируемый корабль «Шэньчжоу» и грузовой корабль «Тяньчжоу». Не исключено, что впоследствии китайская станция станет еще больше, потому что всего она имеет 5 стыковочных узлов. Станция будет всего лишь третьей по счету орбитальной станцией, которая состоит из множества частей. Двумя другими являются выведенная с орбиты в 2001 году станция «Мир» и нынешняя Международная космическая станция.
Схематичное изображение будущей станции
Также в конструкцию станции хотели включить телескоп «Сюньтянь», но потом его решили сделать автономным модулем. Он не будет прикреплен к станции, однако они будут двигаться по одной орбите. Иногда телескоп будет приближаться к одному из стыковочных узлов и у тайконавтов будет возможность вручную настраивать и чинить встроенное оборудование.
Примерный внешний вид телескопа «Сюньтянь»
Ожидается, что китайская орбитальная станция прослужит около 10 лет, но если она по-прежнему будет исправно работать, срок службы вполне могут увеличить. Масса станции без учета космических и грузовых кораблей составит 60 тонн, то есть он будет меньше Международной космической станции аж в 7 раз. Для выработки энергии будут использоваться солнечные панели. Впрочем, они используются почти во всей космической технике, даже в марсианском вертолете Ingenuity.
Гладкоствольное ружьё Сайга-366 калибр 366 ТКМ
Доспехи
Первый скафандр для выхода в открытый космос назывался «Беркут» (к слову, все советские и российские скафандры носят имена хищных птиц: «Орлан», «Ястреб», «Сокол», «Кречет»), вместе с ранцем он весил 40 килограмм, что, конечно же, не имеет никакого значения в условиях невесомости, но дает представление о серьезности конструкции. Все системы были максимально простыми, но эффективными. Например, конструкторы решили обойтись без регенерационной установки для экономии места и выдыхаемый углекислый газ выпускался через клапан прямо в открытый космос.
Однако на тот момент в скафандре использовались несколько новейших технологий того времени: экранно-вакуумная изоляция из нескольких слоев металлизированной ткани защищала космонавта от перепадов температуры, а светофильтр на стекле шлема спасал его глаза от яркого солнечного света.
«Беркут» использовался всего один раз во время полета «Восхода-2» экипажем Беляева и Леонова и является на данный момент единственным универсальным скафандром, то есть предназначавшимся как для спасения пилотов при разгерметизации корабля, так и для выходов в открытый космос.
История программы «Спектр»
Первая идея о сверхтяжелом орбитальном радиотелескопе появилась ещё при создании стометровой ракеты Н-1.
Удалось это только в 1979 году, когда на орбитальной станции «Салют-6» запустили первый в мире космический радиотелескоп.
Задолго до «Хаббла»: необходимость исследований дальнего космоса в различных диапазонах для фундаментальной науки, актуальной космогонии и прикладной космонавтики не вызывала сомнений.
В 1983 году на орбиту вышла советская автоматическая станция для астрофизических наблюдений с 80-сантиметровым ультрафиолетовым телескопом и комплексом рентгеновских спектрометров.
За 6 лет работы аппарат позволил получить важные данные в области нестационарных явлений, разобраться с появлением туманностей, зафиксировать детально вспышку сверхновой и исследовать шлейф кометы Галлея.
В 1989 году Советский союз успел вывести в космос при участии Франции, Дании и Болгарии международный проект «Гранат» с приборами, наблюдающими в оптическом, рентгеновском и гамма-диапазонах.
С его помощью было получено высокодетализованное изображение области центра галактики, открыто более десятка неизвестных ранее аккрецирующих чёрных дыр и нейтронных звезд, составлены подробные каталоги гамма-всплесков.
Космические телескопы стояли и на модуле «Квант-1» станции «Мир».
Первоначальный проект «Спектр» сочетал орбитальный телескоп с тридцатиметровой антенной и распределенный комплекс наземных лабораторий.
Комплексная конструкция позволяла увеличить дальность и «четкость» исследований. Кроме того, ученые предложили строить телескопы для разных частот.
Сначала был разработан радиотелескоп, в 1987 появилось дополнение с рабочим спектром в рентгеновском диапазоне. Уже в начале девяностных прибавился ультрафиолетовый.
Вывод первого телескопа проекта предполагался в 1997 году. Отсутствие финансирования отложило запуск, одновременно с тем позволив доработать составляющие и заручиться международной поддержкой.
В результате первый аппарат комплекса, радиотелескоп «Спектр-Р» с десятиметровой антенной, отправился на орбиту только в 2011 году. В 2021 его вывели из эксплуатации.
Вероятно, после вывода «Хаббла» 30 июня 2021 «Спектр» окажется единственным внеземным исследователем далекого космоса, и будет таковым по меньшей мере до 2035 года.
Колесница с косами
В каких странах реализуются программы пилотируемых космических полетов?
Самолет Ан-2 «Кукурузник»: характеристики, фото, видео
Материалы по теме
Диаграмма Герцшпрунга-Рассела
Рост интенсивности протон-протонной реакции сильно отразится на составе звезды — водород, мало затронутый с момента рождения, станет сгорать куда быстрее. Нарушится баланс между оболочкой Солнца и его ядром — водородная оболочка станет расширяться, а гелиевое ядро, наоборот, сужаться. В возрасте 11 миллиардов лет сила излучения из ядра звезды станет слабее сжимающей его гравитации — греть ядро теперь станет именно растущее сжатие.
Существенные изменения в составе звезды произойдут еще через миллиард лет, когда температура и сжатие ядра Солнца вырастет настолько, что запустится следующая стадия термоядерной реакции — «горение» гелия. В итоге реакции, атомные ядра гелия сначала сбиваются вместе, превращаясь в нестабильную форму бериллия, а затем в углерод и кислород. Сила этой реакции невероятно велика — когда будут зажигаться нетронутые островки гелия, Солнце будет вспыхивать до 5200 раз ярче, чем сегодня!
Красный гигант-Солнце с Земли в представлении художника.
Во время этих процессов ядро Солнца будет продолжать накаляться, а оболочка расширится до границ орбиты Земли и значительно остынет — ибо чем больше площадь излучения, тем больше энергии теряет тело. Пострадает и масса светила: потоки звездного ветра будут уносить остатки гелия, водорода и новообразованных углерода с кислородом в далекий космос. Так наше Солнце превратится в красного гиганта. Полностью завершится развитие светила тогда, когда оболочка звезды окончательно истощится, и останется только плотное, горячее и маленькое ядро — белый карлик. Оно медленно будет остывать миллиардами лет.
Развитие международного космического права
Запуск первого искусственного спутника и развитие космического кораблестроения в СССР, подтолкнули другие страны обратить своё внимание на космос. Создание регламентирования процессов, связанных с космосом и полётами к нему, стало просто необходимо
Создание регламентирования процессов, связанных с космосом и полётами к нему, стало просто необходимо.
Государства признали право мирных полётов в воздухе.В конце концов, после запуска спутника в 1957 году была признана норма между государствами. Некое неписаное соглашение. После этого человечеству потребовалось 10 лет для прихода к Договору и его составлению.
Более того, международное соглашение является договорным. Так как именно на договорах основан международный правовой режим.
Гагарин. Первый в космосе: как это было
В апреля 1961 года произошло одно из самых известных событий в истории человечества, которое по своей значимости не сравнимо ни с чем. Ведь в этот день стартовал первый космический корабль, пилотируемый человеком. Полет прошел нормально, и через 108 минут после старта спускаемый аппарат с космонавтом на борту приземлился недалеко от города Энгельса. Таким образом, первый человек в космосе провел всего 1 час и 48 минут. Конечно, на фоне современных полетов, которые могут длиться до года и даже более, он кажется легкой прогулкой. Однако на момент своего совершения он был расценен как подвиг, так как никто не мог знать, как влияет невесомость на умственную деятельность человека, не опасен ли такой полет для здоровья, и вообще удастся ли космонавту вернуться на Землю.
Комментарии:
Возвращение
По расписанию посадка должна была начаться после завершения 17-ого витка, но произошел сбой в работе тормозной двигательной установки, поэтому корабль продолжил движение. Причиной стал отказ автоматики из-за отстреливания уникальной шлюзовой камеры.
Павел Беляев по инструкции переводит корабль на ручное управление. Далее командиру приходится покинуть кресло (они расположены к панели управления под прямым углом, поэтому манипуляции проводить в таком положении невозможно), чтобы проложить маршрут и привести в действие тормозную двигательную установку. На все эти действия Беляев потратил 22 секунды, за это время аппарат успел пролететь лишних 165 километров к северо-востоку.
Корабль начал снижение и упал не в той точке, куда должен был приземлиться изначально. У пилотов был только передатчик КВ, по которому они отправили сигнал. Приземление корабля зафиксировано 19 марта в 12.02 вблизи города Березники (Пермская область).
Характеристики основных элементов:
Ходовая часть:
- гусеница – армированная стержнями, резинотканевая;
- движитель – гусеничный с передним расположением основных звездочек;
- подвеска гусеницы – пружинно-гидравлическая;
- рама – металлическая с откидным капотом;
Трансмиссия:
- вариатор – автоматический бесступенчатый клиноременный;
- коробка передач – 1-скоростная с реверсом (переключение скоростей – ручное).
Механизмы управления:
- тормозная система – дисковая фрикционного механического типа с ручным приводом;
- управление – руль мотоциклетного типа.
7.
Сверхпустота ЭриданаБольшинство из нас, вероятно, считают космос пустым. По большей части это так. Более 99% вселенной пусты. Мы сейчас говорим не о пустоте внутри самой материи (атомы вещества состоят в основном из пустого пространства). Однако с открытием квантовой физики мы знаем, что даже пустое пространство не является действительно пустым, но содержит незначительное количество газа, энергии и виртуальных частиц, которые появляются и исчезают.
Поэтому все еще довольно удивительно найти области пространства, которые почти полностью лишены всех видов материи, включая звезды, планеты, галактики, скопления, межзвездные материалы и даже саму темную материю (таинственное вещество, которое мы не можем видеть непосредственно, но знаем, что оно составляет большую часть общей массы вселенной). Самая большая из этих пустот найдена в созвездии Эридана.
Она простирается на площади пространства, равной одному миллиарду световых лет. Многие физики выдвинули несколько очень интересных теорий о происхождении этой пустоты. Одна из них гласит, что пустота – это отпечаток параллельной вселенной, с которой было столкновение в далеком прошлом. Другая говорит, что регион может быть домом для черной дыры во вселенной.
Космонавтика сегодня завтра и всегда
С уверенностью можно сказать, что в освоении ближайшего космического пространства реальной задачей для текущих 10-20 лет считается колонизация Марса. К тому же, учёные демонстрируют красивые ролики с трёхмерной анимацией, запускают беспилотные летательные аппараты. Кроме того, они высаживают исследовательские самоходные роботизированные машины, собирающие данные.
Несколько простых истин
Здоровье астронавтов. Мы являемся сложной биологической структурой. Которая, в конце концов, привыкла миллионы лет функционировать в определенных условиях. К тому же, постоянный уровень магнитного поля и гравитации, этого достаточно. Если осанка человека нарушается, то в результате неправильно работают все внутренние органы. Однако, на красной планете искаженное притяжение заставит все системы работать в другом ключе. Другими словами, последствия этого не изучены. Также пагубно будут влиять магнитные поля, разность давлений. Скафандр и поселения в капсулах не являются панацеей. Получается, что Сатурн и Юпитер освоить не получится, ведь там на человека будет действовать чудовищное притяжение.
Успешная посадка возможна, но что делать с обратным стартом? Пока на Земле человечество строит сложнейшие космодромы для запуска. Однако на Марсе сделать это физически невозможно. Получается, что любая миссия будет иметь билет в один конец.
Энергия и материалы, еда и гигиена окажутся большой проблемой. Вероятно, можно топить марсианский лёд. Но нет гарантии, что полученная вода не убьёт первого человека, ступившего на эту планету.
Хроника событий
2020: Рогозин назвал основные цели развития космонавтики в России
Основной целью развития космонавтики в РФ является экспансия человечества в космосе, использование результатов деятельности для обороны страны и роста уровня жизни. Об этом 26 декабря 2020 года сообщил ТАСС со слов генерального директора Роскосмоса Дмитрий Рогозин.
Экспансия человечества в космосе, а также использование результатов космической деятельности для обеспечения стратегической обороны страны, роста качества жизни народа, развития прорывных технологий и проведения фундаментальных научных исследований происхождения Земли и Вселенной, — написал Рогозин на своей странице в в ответ на вопрос пользователя, каковы цели РФ в космосе. |
В декабре 2020 года заместитель гендиректора по международному сотрудничеству Роскосмоса Сергей Савельев во время круглого стола в Совете Федерации заявил, что особая роль в освоении космического пространства отводится исследованию и добыче минеральных космических ресурсов.
По его мнению, в будущем ожидается жесткая конкуренция за доступ к тем ресурсам небесных тел, разработка которых потребует наименьших затрат и наибольшей практической отдачи
Замгендиректора госкорпорации добавил, что с учетом значительных финансово-временных затрат важно принять решение о целесообразности добычи полезных ископаемых, так как полученные результаты должны быть востребованы.