Ионный двигатель

Культура

Впервые ионный двигатель появился в фантастике в 1910 году — в романе Дональда В. Хорнера «Аэроплан к солнцу: приключения авиатора и его друзей». Ионный двигатель широко представлен в фантастической литературе, компьютерных играх и кинематографе (так, в «Звёздных войнах» экономичный ионный двигатель развивает скорость до трети световой и используется для перемещения в обычном пространстве на небольшие по космическим меркам расстояния — например, в пределах планетарной системы), но для практической космонавтики стал доступен только во второй половине XX века. Реальный ионный двигатель по своим техническим характеристикам (и в первую очередь по силе тяги) значительно уступает своим литературным прообразам (так, Эдгард Чуэйри образно сравнивает ионный двигатель с автомобилем, которому нужно двое суток для разгона с 0 до 100 км/ч).

Самый большой торговый флот

Активно развивается и торговля в океане, растет число судов с большим водоизмещением: контейнеровозы, танкеры и другие. При юридической регистрации нового корабля важен порт приписки. Моряки хорошо знают, что строгие условия регистрации и налогообложения на родине отнимают массу сил, времени и средств. Поэтому получилось так, что самый большой торговый флот в мире принадлежит Панаме.

Панама

Маленькое государство в Америке владеет Панамским каналом и не строит крупные суда. При этом Панама является владелицей огромного флота. Все дело в «удобном флаге». При регистрации судна в Панаме владелец платит небольшой налог и может набрать команду за небольшие деньги. Часто регистрация оформляется онлайн. Изначально флаг Панамы выбирали американские суда, желавшие продавать пассажирам алкоголь во время сухого закона. Если в 2005 г. число кораблей Панамы достигло 4688, то сегодня цифра превысила 9000.

Флаг Панамы оказался самым удобным для торговых и пассажирских судов всего мира

Либерия

Либерия воспользовалась примером Панамы и начала предоставлять упрощенную регистрацию. О том, что число торговой флотилии будет расти, говорили давно

Либерия — одно из беднейших государств мира, важной статей ее дохода является использование «удобного флага»

В мире все чаще происходят инциденты с участием судов под флагом Либерии

Китай

Китай укрепляет свои позиции на море. Число торговых операций в Тихом и Индийском океанах растет. Сектор судостроения контролируется государством. Рост отрасли отметился в 1999 г. Сегодня общий тоннаж Китая превышает 170 брутто-тонн.

Китаю принадлежит крупнейший в мире танкер-рудовоз

Япония

После 2010 г. отмечен рост грузоперевозок Японии. Количество кораблей под флагом страны возросло с 673 до 2070 единиц. Основной маршрут пролегает в Тихом океане.

Большое количество заказов на постройку судов выполняет Mitsubishi Heavy Industries

Сингапур

Пятое место списка занимает экономический лидер Юго-Восточной Азии, Сингапур. Ежегодно увеличивается число сухогрузов, танкеров, контейнеровозов, рефрижераторов. Причина регистрации в Сингапуре — удобство флага. Примечательно, что даже не имеющие выход к морю Монголия, Боливия и Молдавия предоставляют морскую регистрацию и имеют флот.

Источник

Миссии

Действующие миссии

  • Starlink — проект компании Илона Маска SpaceX по выведению спутников на околоземную орбиту для создания глобальной сети интернет. Технология используется для маневрирования спутников и избежания их столкновения с космическим мусором[источник не указан 701 день].
  • Artemis
  • Хаябуса-2
  • BepiColombo. Запущен 20 октября 2018 года. ЕКА использует ионный двигатель в этой меркурианской миссии, наряду с гравитационными манёврами и химическим двигателем для перехода на орбиту вокруг Меркурия в качестве искусственного спутника. На аппарате работают самые мощные на сегодняшний день 4 ионных двигателя суммарной тягой 290 мН.

Завершённые миссии

  • SERT (англ. Space Electric Rocket Test, рус. Тест Космического Электрического Двигателя — программа NASA, в которой на спутниках впервые был использован ионный двигатель)
  • Deep Space 1
  • Hayabusa (вернулся на Землю 13 июня 2010 года)
  • Smart 1 (завершил миссию 3 сентября 2006 года, после чего был сведён с орбиты)
  • GOCE (после исчерпания запасов рабочего тела сошёл с орбиты)
  • LISA Pathfinder (ЕКА) использовал ионные двигатели в качестве вспомогательных для точного контроля высоты; деактивирован 30 июня 2017.
  • Dawn. 1 ноября 2018 года аппарат исчерпал все запасы топлива для маневрирования и ориентации, его миссия, длившаяся 11 лет, была официально завершена.

Планируемые миссии

  • Международная космическая станция. По состоянию на март 2011 года планировалась доставка на МКС электромагнитного двигателя (VASIMR) Ad Astra VF-200 с мощностью в 200 кВт VASIMR. VF-200 представляет собой версию VX-200. Поскольку доступная электрическая мощность на МКС меньше 200 кВт, проект ISS VASIMR включал в себя систему батарей, которая накапливала энергию для 15 минут работы двигателя.
  • Solar Orbiter.

Нереализованные миссии

Компьютерная модель Прометея-1

NASA ввело проект «Прометей», для которого разрабатывался мощный ионный двигатель, питающийся электричеством от бортового ядерного реактора. Предполагалось, что такие двигатели в количестве восьми штук могли бы разогнать аппарат до 90 км/с. Первый аппарат этого проекта Jupiter Icy Moons Explorer планировалось отправить к Юпитеру в 2017 году, однако разработка этого аппарата была приостановлена в 2005 году из-за технических сложностей. В 2005 году программа была закрыта. В настоящее время идёт поиск более простого проекта АМС для первого испытания по программе «Прометей».

Проект Джефри Лэндиса

Geoffrey A. Landisruen предложил проект межзвёздного зонда с ионным двигателем, получающим энергию через лазер от базовой станции, что даёт некоторое преимущество по сравнению с чисто космическим парусом. В настоящее время данный проект неосуществим из-за технических ограничений — например, он потребует силы тяги от ионных двигателей в 1570 Н при нынешних 20—250 мН(по другим данным рекорд тяги у современных ионных двигателей 5,4 Н).

Читайте также.

Модификации

Самым ярким отличием многих электростатических ионных двигателей является метод ионизации атомов ракетного топлива – бомбардировка электронами («NSTAR», «NEXT», «T5», «T6»), возбуждение радиочастотным излучением («RIT 10», «RIT 22», «N-RIT»), возбуждение микроволновым излучением («10», «20). С этим связана необходимость наличия в катоде и необходимость создания системы электроснабжения. Двигатели Кауфмана, как минимум, требуют наличия катода, анода и камеры, тогда как двигатели на радио- и микроволнах нуждаются в дополнительном генераторе радиоволн, но не требуют наличия анода и катода.

В сетчатых системах извлечения присутствуют небольшие отличия в плане геометрии сеток и использованных материалов, которые могут иметь косвенное значение для срока службы системы сеток.

Перспективы применения ионных двигателей:

Применение ионных двигателей в космических аппаратах открывает новые перспективы развития космонавтики, в частности, запускаемых космических аппаратов.

Современные тенденции таковы, что доля запускаемых тяжелых космических аппаратов (свыше 1000 кг) неуклонно снижается и составляет порядка не более 30% от всех запусков.

Все более востребованными становятся малые космические аппараты, имеющие вес от 100 кг до 500 кг, находящиеся на низкой орбите до 1000 км. и функционирующие продолжительное время – в течение 5-10 лет.

К малым космическим аппаратам относятся спутники и системы мобильной связи и радионавигации, мониторинга Земли, атмосферы и околоземного космического пространства.

Ионные двигатели в ближайшем будущем позволят заменить двигатели орбитального движения малых космических аппаратов, что увеличит срок их активной работы (эксплуатации) в 2-3 раза и продлит срок их жизни с 2-3 лет до 5-10 лет.

В отдаленной перспективе планируется оснащать все, в т.ч. тяжелые, космические аппараты ионными двигателями, что позволит совершать путешествия к далеким планетам и звездам, пилотируемые экспедиции к планетам Солнечной системы, тяжелые транспортные перелеты.

[править] Краткие технические характеристики

ЭРД характеризуются малым массовым расходом РТ и высокой скоростью истечения ускоренного потока частиц. Нижняя граница скорости истечения примерно совпадает с верхней границей скорости истечения струи химического двигателя и составляет около 3 000 м/с. Верхняя граница теоретически неограничена (в пределах скорости света), однако для перспективных моделей двигателей рассматривается скорость, не превышающая 200 000 м/с. В настоящее время для двигателей различных типов оптимальной считается скорость истечения от 16 000 до 60 000 м/с.

В связи с тем, что процесс ускорения в ЭРД проходит при низком давлении в ускорительном канале (концентрация частиц не превышает 1020 частиц/м³), плотность тяги довольно мала, что ограничивает применение ЭРД: внешнее давление не должно превышать давление в ускорительном канале, а ускорение КА очень мало (десятые или даже сотые g). Исключением из этого правила могут быть ЭДД на малых КА.

Электрическая мощность ЭРД колеблется от сотен ватт до мегаватт. Применяемые в настоящее время на КА ЭРД имеют мощность от 800 до 2 000 Вт.

ЭРД характеризуются не очень высоким КПД — от 30 до 60 %.

Системы видеонаблюдения

[править] Принцип действия

Испытания ионного двигателя на ксеноне

Принцип работы двигателя заключается в ионизации газа и его разгоне электростатическим полем. При этом, благодаря высокому отношению заряда к массе, становится возможным разогнать ионы до очень высоких скоростей (вплоть до 210 км/с по сравнению с 3—4,5 км/с у химических ракетных двигателей). Таким образом, в ионном двигателе можно достичь очень большого удельного импульса. Это позволяет значительно уменьшить расход реактивной массы ионизированного газа по сравнению с расходом реактивной массы в химических ракетах, но требует больших затрат энергии.

В существующих реализациях для поддержки работы двигателя используются солнечные батареи. Но для работы в дальнем космосе такой способ неприемлем. Поэтому уже сейчас для этих целей иногда используются ядерные установки.

Источником ионов служит газ, как правило это аргон или водород, бак с газом стоит в самом начале двигателя, оттуда газ подаётся в отсек ионизации, получается холодная плазма, которая разогревается в следующем отсеке посредством ионного циклотронного резонансного нагрева. После нагрева высокоэнергетическая плазма подается в магнитное сопло, где она формируется в поток посредством магнитного поля, разгоняется и выбрасывается в окружающую среду. Таким образом достигается тяга.

С тех пор плазменные двигатели прошли большой путь и разделились на несколько основных типов, это электротермические двигатели, электростатические двигатели, сильноточные или магнитодинамические двигатели и импульсные двигатели. В свою очередь электростатические двигатели делятся на ионные и плазменные (ускорители частиц на квазинейтральной плазме).

Ионный двигатель использует в качестве топлива ксенон или ртуть. Первый ионный двигатель назывался сетчатый электростатический ионный двигатель. В ионизатор подается ксенон, который сам по себе нейтрален, но при бомбардировании высокоэнергетическими электронами ионизируется. Таким образом в камере образуется смесь из положительных ионов и отрицательных электронов. Для «отфильтровывания» электронов в камеру выводится трубка с катодными сетками, которая притягивает к себе электроны.

Положительные ионы притягиваются к системе извлечения, состоящей из 2 или 3 сеток. Между сетками поддерживается большая разница электростатических потенциалов (+1090 вольт на внутренней против — 225 на внешней). В результате попадания ионов между сетками они разгоняются и выбрасываются в пространство, ускоряя корабль согласно третьему закону Ньютона. Электроны, пойманные в катодную трубку, выбрасываются из двигателя под небольшим углом к соплу и потоку ионов. Это делается по двум причинам:

  • чтобы корпус корабля оставался нейтрально заряженным;
  • чтобы ионы, «нейтрализованные» таким образом, не притягивались обратно к кораблю.

Чтобы ионный двигатель работал — нужны всего 2 вещи: газ и электричество.

Недостаток двигателя в его нынешних реализациях — очень слабая тяга (порядка 50-100 миллиньютонов). Таким образом, нет возможности использовать ионный двигатель для старта с планеты, но, с другой стороны, в условиях невесомости, при достаточно долгой работе двигателя есть возможность разогнать космический аппарат до скоростей, недоступных сейчас никаким другим из существующих видов двигателей. Однако разрабатываются более совершенные и мощные типы электроракетных двигателей (холловский и магнитоплазмодинамический), превосходящие ионный двигатель по величине тяги и как следствие конечной скорости космического аппарата.

Немного физики или как это работает

Разные типы ракетных двигателей имеют существенные отличия в своей конструкции, но работа любого из них базируется на знаменитом третьем законе Ньютона, который гласит, что «каждому действию есть равное противодействие». РД выбрасывает струю рабочего тела в одном направлении, а сам, в соответствии с ньютоновским постулатом, движется в противоположную. Продукты сгорания топлива выходят через сопло, образуя тягу – это основы теории ракетных двигателей.

Главной характеристикой, определяющей эффективность подобных систем, является тяга (сила тяги). Она образуется в результате превращения исходной энергии в кинетическую реактивной струи рабочего тела. В метрической системе тяга ракетного двигателя измеряется в ньютонах, а американцы считают ее в фунтах.

Схема работы простейшего жидкостного ракетного двигателя

Еще одним важнейшим параметром ракетных двигателей является удельный импульс. Это отношение силы тяги (или количества движения) к расходу топлива в единицу времени. Данный параметр рассматривается в качестве степени совершенства того или иного РД, и является мерой его экономичности.

Химические двигатели работают за счет экзотермической реакции сгорания горючего и окислителя. Этот тип РД имеет две составные части:

  • Сопло, в котором тепловая энергия преобразуется в кинетическую;
  • Камеру сгорания, где происходит процесс горения, то есть превращения химической энергии топлива в тепловую.

Общий принцип работы

Ионные двигатели используют пучки ионов (электрически заряженных атомов или молекул) для создания тяги в соответствии с законом сохранения импульса . Способы ускорения ионов различаются, но во всех конструкциях используется соотношение заряда и массы ионов. Это соотношение означает, что относительно небольшие разности потенциалов могут создавать высокие скорости выхлопа. Это уменьшает количество требуемой реакционной массы или топлива, но увеличивает требуемую удельную мощность по сравнению с химическими ракетами . Таким образом, ионные двигатели могут достигать высоких удельных импульсов . Недостатком малой тяги является малое ускорение, поскольку масса силового агрегата напрямую коррелирует с величиной мощности. Такая низкая тяга делает ионные двигатели непригодными для запуска космических аппаратов на орбиту, но эффективными для движения в космосе.

Ионные двигатели делятся на электростатические или электромагнитные . Основное отличие — способ ускорения ионов.

  • Электростатические ионные двигатели используют кулоновскую силу и ускоряют ионы в направлении электрического поля.
  • Электромагнитные ионные двигатели используют силу Лоренца для перемещения ионов.

Источниками питания для ионных двигателей обычно являются электрические солнечные батареи , но на достаточно больших расстояниях от Солнца используется ядерная энергия . В каждом случае масса источника питания пропорциональна максимальной мощности, которая может быть предоставлена, и оба обеспечивают для этого приложения почти неограниченное количество энергии.

Электрические подруливающие устройства имеют тенденцию создавать низкую тягу, что приводит к низкому ускорению. Определение , в стандартное гравитационное ускорение Земли , а также отметить , что это может быть проанализирована. NSTAR подруливающее устройство производит силу тяги 92 мН будет ускорять спутник с массой 1 Mg от 0,092 N / 1000 кг = 9,2 × 10 -5 м / с 2 (или 9,38 × 10 -6 г). Однако это ускорение может продолжаться месяцами или годами, в отличие от очень коротких ожогов химических ракет. 1 грамм знак равно 9,81 м / s 2 >>

Ионный двигатель малой тяги — не самый многообещающий тип двигателя космического корабля с электрическим приводом , но на сегодняшний день он является наиболее успешным на практике. Ионному двигателю потребуется два дня, чтобы разогнать автомобиль до скорости шоссе в вакууме. Технические характеристики, особенно тяга , значительно уступают прототипам, описанным в литературе, технические возможности ограничиваются объемным зарядом, создаваемым ионами. Это ограничивает плотность тяги ( сила в поперечном сечении зоны двигателя). Ионные двигатели создают небольшие уровни тяги (тяга Deep Space 1 примерно равна весу одного листа бумаги) по сравнению с обычными химическими ракетами , но достигают высокого удельного импульса или эффективности массы топлива за счет ускорения выхлопа до высокой скорости. Мощности придана выхлопных возрастает пропорционально квадрату скорости истечения в то время как увеличение тяги является линейным. И наоборот, химические ракеты обеспечивают высокую тягу, но их общий импульс ограничен небольшим количеством энергии, которое может храниться химически в топливе. Учитывая практический вес подходящих источников энергии, ускорение ионного двигателя малой тяги часто составляет менее одной тысячной стандартной силы тяжести . Однако, поскольку они работают как электрические (или электростатические) двигатели, они преобразуют большую часть входной мощности в кинетическую мощность выхлопа. Химические ракеты работают как тепловые двигатели , и теорема Карно ограничивает скорость истечения.

Как работает плазменный ракетный двигатель

Из истории данного вопроса

Ракетный двигатель – один из старейших видов двигателя, известных человечеству. Мы не можем точно ответить на вопрос, когда именно была изготовлена первая ракета. Есть предположение, что это сделали еще древние греки (деревянный голубь Архита Тарентского), но большинство историков считает родиной данного изобретения Китай. Это произошло примерно в III столетии нашей эры, вскоре после открытия пороха. Первоначально ракеты использовали для фейерверков и других развлечений. Пороховой ракетный двигатель был достаточно эффективен и прост в изготовлении.

Первая боевая ракета была разработана в 1556 году Конрадом Хаасом, который придумывал различные виды вооружений для императора Фердинанда I. Этого изобретателя можно назвать первым создателем теории ракетных двигателей, также он является автором идеи многоступенчатой ракеты – в трудах Хааса подробно описан механизм работы летательного аппарата, состоящего из двух ракет. Изыскания продолжил поляк Казимир Семенович, живший в середине XVII века. Однако все эти проекты так и остались на бумаге.

Практическое использование ракет началось только в XIX столетии. В 1805 году британский офицер Уильям Конгрив продемонстрировал пороховые ракеты, которые имели небывалую по тем временам мощность. Презентация произвела должное впечатление, и ракеты Конгрива были приняты на вооружение английской армии. Их главным преимуществом, по сравнению со ствольной артиллерией, была высокая мобильность и относительно небольшая стоимость, а основным недостатком – кучность огня, которая оставляла желать лучшего. К концу XIX века широкое распространение получили нарезные орудия, стрелявшие очень точно, поэтому ракеты были сняты с вооружения.

Примерно так использовались ракеты Конгрива. Современная реконструкция

В России данным вопросом занимался генерал Засядко. Он не только усовершенствовал ракеты Конгрива, но и первым предложил использовать их для полета в космос. В 1881 году российский изобретатель Кибальчич создал собственную теорию ракетных двигателей.

Огромный вклад в развитие этого направления техники внес еще один наш соотечественник – Константин Циолковский. Среди его идей жидкостный ракетный двигатель (ЖРД), работающий на смеси кислорода и водорода.

В начале прошлого столетия энтузиасты во многих странах мира занимались созданием жидкостного РД, первым добился успеха американский изобретатель Роберт Годдард. Его ракета, работающая на смеси бензина и жидкого кислорода, успешно стартовала в 1926 году.

Вторая мировая война стала периодом возвращения ракетного оружия. В 1941 году на вооружение Красной армии была принята установка залпового огня БМ-13 – знаменитая «Катюша», а в 1943 – немцы начали использование баллистической Фау-2 с жидкостным ракетным двигателем. Она была разработана под руководством  Вернера фон Брауна, который позже возглавил американскую космическую программу. Германией также было освоено производство КР Фау-1 с прямоточными реактивным мотором.

Ракета Фау-2. Немцы называли ее «оружие возмездия». Правда, оно не слишком помогло Гитлеру

В разные годы предпринимались попытки создания ракетных двигателей, работающих за счет энергии ядерного распада (синтеза), но до практического применения подобных силовых установок дело так и не дошло. В 70-е годы в СССР и США началось использование электрических ракетных двигателей. Сегодня они применяются для коррекции орбит и курса космических аппаратов. В 70-е и 80-е годы были эксперименты с плазменными РД, считается, что они имеют хороший потенциал. Большие надежды связывают с ионными ракетными двигателями, использование которых теоретически может значительно ускорить космические аппараты.

Однако пока почти все эти технологии находятся в зачаточном состоянии, и основным транспортным средством покорителей космоса остается старая добрая «химическая» ракета. В настоящее время за титул «самый мощный ракетный двигатель в мире» соревнуется американский F-1, участвовавший в лунном проекте, и советский РД-170/171, который использовался в программе «Энергия-Буран».

Примечания

Галерея изображений

Литература

Поиск решения

Как уже упоминалось, основная проблема ионных двигателей заключается в очень малой тяге, однако у ученых уже есть некоторые идеи для ее увеличения.

Первая — значительно увеличить количество электричества и силу магнитного поля, используемого для ускорения ионов. Для этого, вместо солнечных панелей, НАСА рассматривало возможность создания ионного двигателя, работающего на ядерном реакторе. Агентство планировало миссию по изучению ледяных спутников Юпитера. Новый ионный двигатель «NEXIS», работающий на ядерном реакторе, должен был доставить аппарат по очереди: к Ганимеду, Каллисто и, затем, к Европе.

Ионный двигатель «NEXIS»

Космический аппарат планировалось вывести на орбиту Земли по частям, произвести сборку, после чего запустить к Юпитеру с помощью 8 ионных двигателей. Полет до точки назначения длился бы от 5 до 8 лет. На изучение Каллисто, а затем Ганимеда отводилось 6 месяцев, затем аппарат должен был выйти на орбиту Европы и через 30 дней покинуть место назначения. При удачном течении экспедиции, аппарат мог бы посетить еще орбиту Ио — еще одного спутника Юпитера. Миссия была отменена в 2005 году.

Потери

С этим самолетом связано 8 катастроф, самыми масштабными из которых были:

  • 16.09.1991. Самолет взлетел с перегрузом, механизация разрушилась в воздухе. Машина упала в лесу. Погибли 6 членов экипажа и 7 пассажиров.
  • 05.06.1994, перелет Ан-72В Новосибирск – Киев. Тогда в полете было обесточено бортовое оборудование. Причина – тепловой разгон аккумуляторов. Самолет произвел вынужденную посадку в Кургане, при этом он выкатился за пределы взлетно-посадочной полосы с разрушенным правым задним пневматиком. Экипаж и пассажиры не пострадали.
  • 10.02.1995. Ан-72В с тремя членами экипажа сопровождал прототип Ан-70 с 7 членами экипажа на борту. Самолеты столкнулись в небе над Бородянским районом Киевской области. Ан-72 уцелел и сумел совершить посадку в аэропорту Антонова. Ан-70 упал в лес, все члены экипажа погибли.
  • 07.06.2000, перелет Моздок-Москва. В воздухе произошла разгерметизация самолета. С высоты 8,5 тысяч метров самолет начал неуправляемое снижение, так как в результате гипоксии экипаж и пассажиры потеряли ориентацию. Тем не менее, экипаж сумел посадить самолет в Ростове-на-Дону.
  • 25.12.2012. Катастрофа под Шимкентом. Самолет пограничной службы республики Казахстан в сложных метеоусловиях упал на землю с высоты 800 метров. Причина – ошибка экипажа. Погибли 7 членов экипажа и 20 пассажиров.

Преимущества ионного двигателя для космического корабля

Ионы на выходе из двигателя разгоняются до очень высоких скоростей. В своем максимуме они могут достигать 210 км/с. При этом, химические ракетные двигатели не способны достигать и 10 км/с, находясь в диапазоне 3-5 км/с.

В нашем Telegram-чате все говорят про варп-двигатель, но давайте сначала с ионным разберемся.

Возможность достижения большого удельного импульса позволяет очень сильно сократить расход реактивной массы ионизированного газа в сравнении с аналогичным показателем для традиционного химического топлива. А еще, ионный двигатель может непрерывно работать более трех лет. Энергия, которая нужна для ионизации топлива берется от солнечных батарей — в космосе с этим проблем нет.

Если спешить с ускорением некуда, то ионный двигатель станет отличным вариантом.

История

Впервые ионный двигатель появился в фантастике в 1910 году — в романе Дональда В. Хорнера «Аэроплан к солнцу: приключения авиатора и его друзей». Ионный двигатель широко представлен в фантастической литературе, компьютерных играх и кинематографе (так в «Звёздных войнах» экономичный ионный двигатель развивает скорость до трети световой и используется для перемещения в обычном пространстве на небольшие по космическим меркам расстояния — например в пределах планетарной системы), но для практической космонавтики стал доступен только во второй половине XX века. Реальный ионный двигатель по своим техническим характеристикам (и в первую очередь по силе тяги) значительно уступает своим литературным прообразам (так Эдгард Чуэйри образно сравнивает ионный двигатель с автомобилем, которому нужно двое суток для разгона с 0 до 100 км/ч).

Ионный двигатель является первым хорошо отработанным на практике типом электрического ракетного двигателя. Концепция ионного двигателя была выдвинута в 1917 году Робертом Годдардом, а в 1954 году Эрнст Штулингерruen детально описал эту технологию, сопроводив её необходимыми вычислениями.

В 1955 году Алексей Иванович Морозов написал, а в 1957 году опубликовал в ЖЭТФ статью «Об ускорении плазмы магнитным полем». Это дало толчок к исследованиям, и уже в 1964 году на советском аппарате «Зонд-2» первым таким устройством, выведенным в космос, стал плазменно-эрозионный двигатель конструкции А. М. Андрианова. Он работал в качестве двигателя ориентации с питанием от солнечных батарей.

Первый американский функционирующий ионный электростатический двигатель (создан в США в НАСА John H. Glenn Research Center at Lewis Field) был построен под руководством Гарольда Кауфманаruen в 1959 году.
В 1964 году прошла первая успешная демонстрация ионного двигателя в суборбитальном полёте (SERT I). Двигатель успешно работал в течение запланированной 31 минуты.
В 1970 году прошло испытание, призванное продемонстрировать эффективность долговременной работы ртутных ионных электростатических двигателей в космосе (SERT II). Малая тяга и низкий КПД надолго отвадили американских конструкторов от применения электрических и ионных двигателей.

Тем временем в Советском Союзе продолжалась разработка и улучшались характеристики. Были разработаны и применялись различные типы ионных двигателей на различных типах космических аппаратов. Двигатели СПД-25 тягой 25 миллиньютон, СПД-100, и другие серийно устанавливались на советские спутники с 1982 года.

В качестве основного (маршевого) двигателя ионный двигатель был впервые применён на космическом аппарате Deep Space 1 (первый запуск двигателя — 10 ноября г.). Следующими аппаратами стали европейский лунный зонд Смарт-1, запущенный 28 сентября 2003 года, и японский аппарат Хаябуса, запущенный к астероиду Итокава в мае 2003 года.

Следующим аппаратом НАСА, обладающим маршевыми ионными двигателями, стала (после ряда замораживаний и возобновления работ) АМС Dawn, которая стартовала 27 сентября 2007 года. Dawn предназначен для изучения Весты и Цереры и несёт три двигателя NSTAR, успешно испытанных на Deep Space 1.

Европейское Космическое Агентство установило ионный двигатель на борту спутника GOCE, запущенного 17 марта 2009 года на сверхнизкую околоземную орбиту высотой около 260 км. Ионный двигатель создаёт в постоянном режиме импульс, компенсирующий атмосферное трение и другие негравитационные воздействия на спутник.

Изначально Эриду назвали Зена

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector