Виды ядерных взрывов — классификация, поражающие факторы и последствия

Какие бывают ядерные взрывы?

Существует две основные классификации ядерных взрывов:

  • по мощности;
  • по месторасположению (точке расположения заряда) в момент взрыва.

Для оценки этого параметра используется тротиловый эквивалент. Он показывает, сколько нужно взорвать тринитротолуола, чтобы получить сопоставимую энергию. Согласно этой классификации, бывают следующие виды ядерных взрывов:

  • сверхмалые;
  • малые;
  • средние;
  • большие;
  • сверхбольшие.

При сверхмалом (до 1 кТ) взрыве образуется огненный шар диаметром не более 200 метров и грибовидное облако с высотой 3,5 км. Сверхбольшие — имеют мощность более 1 мТ, их огненный шар превышает 2 км, а высота облака – 8,5 км.

Различные виды ядерных взрывов

Не менее важной особенностью является месторасположение ядерного заряда перед взрывом, а также среда, в которой он происходит. Исходя из этого, различают следующие виды ядерных взрывов:

  • Атмосферный. Его центр может находиться на высоте от нескольких метров до десятков, а то и сотен километров над поверхностью земли. В последнем случае он относится к категории высотных (от 15 до 100 км). Воздушный ядерный взрыв имеет сферическую форму вспышки;
  • Космический. Для попадания в эту категорию, он должен иметь высоту больше 100 км;
  • Наземный. К этой группе относятся не только взрывы на поверхности земли, но и на высоте несколько метров над ней. Они проходят как с выбросом грунта, так и без него;
  • Подземный. После подписания Договора о запрете испытаний ЯО в атмосфере, на земле, под водой и в космосе (1963 год) подобный тип стал единственно возможным при испытаниях ядерных зарядов. Он проводится на разной глубине, от нескольких десятков до сотен метров. Под толщей земли образуется полость или столб обрушения, сила ударной волны значительно ослабляется (зависит от глубины);
  • Надводный. В зависимости от высоты он может быть бесконтактным и контактным. В последнем случае происходит образование подводной ударной волны;
  • Подводный. Его глубина бывает разной, от десятков до многих сотен метров. Исходя из этого, имеет свои особенности: наличие или отсутствие «султана», характер радиоактивного заражения и др.

Сардиния

Необходимо ли разрешение на подводное ружье?

Такой вопрос возникает практически у всех новичков, решивших приобщиться к этому виду активного отдыха. На данный момент в законодательстве РФ не предусмотрено каких-либо разрешительных документов на подводные ружья всех типов. При этом нередки случаи, когда инспекторы рыбоохраны, полицейские или служащие других силовых ведомств осуществляют задержание, изымают данное снаряжение или составляют административный протокол. На самом деле имеется всего несколько требований, которые следует учитывать владельцу:

  1. Хранение и транспортировка ружья для подводной охоты должна осуществляться в специальном чехле в незаряженном состоянии.
  2. Запрещено использование подводных ружей в местах большого скопления людей (пляжах, бассейнах и т. п.).
  3. Использование вместе с дыхательными аппаратами (аквалангом). Практически во всех странах приравнивается к браконьерству (исключение – США).
  4. Запрет на вылов в период нереста, а также соблюдение других правил рыболовства, действующих в РФ.

Все остальные интерпретации можно смело обжаловать в судебном порядке, не забывая и про моральный ущерб.

Правила рисования герба

Отличия от атмосферных испытаний

Вообще ядерные эффекты в космосе (или на очень больших высотах) проявляются качественно иначе. В то время как атмосферный ядерный взрыв имеет характерное грибовидное облако , высотные и космические взрывы имеют тенденцию проявлять сферическое « облако », напоминающее другие космические взрывы, пока не искажаются магнитным полем Земли , и заряженные частицы, возникающие в результате взрыва. может пересекать полушария, создавая полярное сияние, благодаря чему создатель документальных фильмов Питер Куран охарактеризовал эти взрывы как « радужные бомбы». Визуальные эффекты высотного или космического взрыва могут длиться дольше, чем атмосферные испытания, иногда более 30 минут. Тепло от выстрела Bluegill Triple Prime на высоте 50 километров (31 миль) ощущалось персоналом на земле на атолле Джонстон , и это испытание вызвало ожоги сетчатки у двух сотрудников на эпицентре , которые не были одеты в защитные очки.

Технические характеристики Desert Eagle Umarex

История создания Panzerschreck

Механизм действия кумулятивного заряда[править | править код]

Кумулятивная струяправить | править код

После взрыва капсюля-детонатора заряда, возникает детонационная волна, которая перемещается вдоль оси заряда.

Волна, распространяясь к облицовке поверхности конуса, схлопывает её в радиальном направлении, при этом в результате соударения частей облицовки давление в ней резко возрастает. Давление продуктов взрыва, достигающее порядка 1010Па (105 кгс/см²), значительно превосходит предел текучести металла, поэтому движение металлической облицовки под действием продуктов взрыва подобно течению жидкости, которое, однако, обусловлено не плавлением, а пластической деформацией.

Аналогично жидкости, металл облицовки формирует две зоны: большой по массе (порядка 70—90 %) медленно двигающийся «пест» и меньшую по массе (порядка 10—30 %) тонкую (порядка толщины облицовки) гиперзвуковую металлическую струю, перемещающуюся вдоль оси симметрии заряда, скорость которой зависит от скорости детонации взрывчатого вещества и геометрии воронки. При использовании воронок с малыми углами при вершине возможно получить крайне высокие скорости, но при этом возрастают требования к качеству изготовления облицовки, так как повышается вероятность преждевременного разрушения струи. В современных боеприпасах используются воронки со сложной геометрией (экспоненциальные, ступенчатые и др.) с углами в диапазоне от 30 до 60°; скорость кумулятивной струи при этом достигает 10 км/с.

Процесс запрессовки медной облицовочной юбки, она же в виде готового изделия и внутри снаряженного боеприпаса в разрезе

Поскольку при встрече кумулятивной струи с бронёй развивается очень высокое давление, на один-два порядка превосходящее предел прочности металлов, то струя взаимодействует с бронёй в соответствии с законами гидродинамики, то есть при соударении они ведут себя как идеальные жидкости. Прочность брони в её традиционном понимании в этом случае практически не играет роли, а на первое место выходят показатели плотности и толщины бронирования.

Теоретическая пробивная способность кумулятивных снарядов пропорциональна длине кумулятивной струи и квадратному корню отношения плотности облицовки конуса (воронки) к плотности брони. Практическая глубина проникновения кумулятивной струи в монолитную броню у существующих боеприпасов варьируется в диапазоне от 1,5 до 4 калибров.

При схлопывании конической оболочки скорости отдельных частей струи оказываются различными, и струя в полёте растягивается. Поэтому небольшое увеличение промежутка между зарядом и мишенью увеличивает глубину пробивания за счёт удлинения струи. Однако при значительных расстояниях между зарядом и мишенью непрерывность струи нарушается, что снижает бронебойный эффект. Наибольший эффект достигается на так называемом «фокусном расстоянии», на котором струя максимально растянута, но ещё не разорвана на отдельные фрагменты. Для выдерживания этой дистанции используют различные типы наконечников соответствующей длины.

При перемещении в твёрдой среде градиентно разорванная кумулятивная струя самоцентрируется, а диаметр трека по мере удаления от точки фокуса уменьшается. При движении разорванной на фрагменты кумулятивной струи в жидкостях и газах каждый фрагмент перемещается по собственной траектории, а диаметр трека по мере удаления от точки фокуса увеличивается. Этим объясняется резкое снижение пробивной способности высокоградиентных кумулятивных струй при использовании противокумулятивных экранов.

Использование заряда с кумулятивной выемкой без металлической облицовки снижает кумулятивный эффект, так как вместо металлической струи действует струя газообразных продуктов взрыва; однако при этом достигается значительно более сильное заброневое действие.

Ударное ядроправить | править код

Основная статья: Ударное ядро

Ударное ядро — компактная металлическая форма, напоминающая пест, образующаяся в результате сжатия металлической облицовки кумулятивного заряда продуктами его детонации.

Для образования ударного ядра кумулятивная выемка имеет тупой угол при вершине или форму сферического сегмента переменной толщины (у краёв толще, чем в центре). Под влиянием ударной волны происходит не схлопывание конуса, а выворачивание его «наизнанку». Полученный снаряд диаметром в четверть и длиной в один калибр (первоначальный диаметр выемки) разгоняется до скорости 2,5 км/с. Бронебойное действие ядра ниже, чем у кумулятивной струи, но зато сохраняется на расстоянии до 1000 калибров. В отличие от кумулятивной струи, состоящей лишь из 15 % массы облицовки, ударное ядро образуется из 100 % её массы.

Применение в боевых целях

Хиросима и Нагасаки — единственные города, в отношении которых было применено ядерное оружие. Случившаяся там трагедия не имела себе равных.

Жители испытали на себе действие воздушного ядерного взрыва, инициированного на небольшом расстоянии от поверхности земли и классифицируемого как низкий. При этом была полностью разрушена инфраструктура, погибло около 200 тысяч населения. Две трети из них умерли мгновенно. Те, кто находился в эпицентре, распались на молекулы от чудовищных температур. Световое излучение оставляло от них тени на стенах.

Люди, которые были дальше от эпицентра, погибали от ударной волны и гамма-излучения ядерного взрыва. Часть выживших получила летальную дозу облучения, но врачи еще не знали о лучевой болезни, поэтому никто не понимал, почему после мнимых признаков выздоровления происходит ухудшение состояния пациентов. Медики считали это дизентерией, но в течение 3-8 недель больные, у которых открывалась сильная рвота, умирали. Странная болезнь людей, выживших во время атомной бомбардировки Хиросимы и Нагасаки, стала стимулом к началу исследований в области ядерной медицины.

Наземные испытания

Первые бомбы испытывались прямо на поверхности земли. Именно такие типы взрывов сопровождаются четко выраженным грибовидным облаком в воздухе и кратером, простирающимся на несколько десятков, а то и сотен метров в почве. Наземный взрыв выглядит наиболее устрашающее, так как облако, низко зависшее над землей, притягивает в себя не только пыль, но и существенную часть грунта, что делает его практически черным. Частицы грунта перемешиваются с химическими элементами, а затем выпадают на землю, что делает территорию радиоактивно зараженной и совершенно непригодной для жизни. В военных целях это может использоваться для уничтожения мощных строений или объектов, заражения обширных территорий. Разрушительный эффект при этом наиболее мощный.

Советские высотные испытания

Советы провели четыре высотных испытания в 1961 году и три в 1962 году. Во время кубинского ракетного кризиса в октябре 1962 года и США, и СССР произвели несколько высотных ядерных взрывов в форме бряцания оружием.

Наихудшие последствия советских высотных испытаний произошли 22 октября 1962 года при ядерных испытаниях советского проекта К ( контрольные испытания системы ПРО), когда ракета с боеголовкой мощностью 300 кт взорвалась недалеко от Джезказгана на высоте 290 км. В результате ЭМИ было заплавлено 570 км воздушной телефонной линии с измеренным током 2 500 А, возник пожар, в результате которого сгорела Карагандинская электростанция, и отключено 1 000 км неглубоких кабелей электропитания между Целиноградом и Алма-Атой .

В следующем году был принят Договор о частичном запрещении испытаний , положивший конец атмосферным и внеатмосферным ядерным испытаниям. Договор по космосу 1967 года запретил размещение и использование ядерного оружия в космосе. Договор о всеобъемлющем запрещении ядерных испытаний 1996 года запрещает все виды ядерных взрывов; будь то над или под землей, под водой или в атмосфере.

2.5. Боеприпасы объемного взрыва

Предназначены для поражения ударной волной и огнем живой силы, сооружений и техники противника. Источником энергии являются смеси метилацетина, пропадеина и пропана с добавкой бутана или смеси на основе окиси пропилена (этилена) и различных видов жидкого топлива.

Принцип действия такого боеприпаса заключается в следующем: жидкое топливо, обладающее высокой теплотворной способностью (окись этилена, диборан, перекись уксусной кислоты, пропилнитрат), помещенное в специальную оболочку, при взрыве разбрызгивается, испаряется и перемешивается с кислородом воздуха, образуя сферическое облако топливно-воздушной смеси радиусом около 15 м и толщиной слоя 2-3 м. Образовавшаяся смесь подрывается в нескольких местах специальными детонаторами. В зоне детонации за несколько десятков микросекунд развивается температура 2500-3000°С. В момент взрыва внутри оболочки из топливно-воздушной смеси образуется относительная пустота – безжизненное пространство размером с футбольное поле (поэтому объёмно-детонирующие боеприпасы называют «вакуумными бомбами»).

Рис. 2.6. Применение боеприпасов объёмного взрыва

Основным поражающим фактором боеприпаса объёмного взрыва является ударная волна. В то же время резко возрастает температура воздуха, создается обедненная кислородом, отравленная продуктами сгорания обширная область атмосферы.

Боеприпасы объемного взрыва по своей мощности занимают промежуточное положение между ядерными и обычными (фугасными) боеприпасами. По своей разрушительной способности такой боеприпас может быть сравним с тактическим ядерным боеприпасом. Избыточное давление во фронте ударной волны боеприпаса объёмного взрыва даже на удалении 100 м от центра взрыва может достигать 100 кПа (1 кгс/см²).

Бомбы объемного взрыва испытаны американцами еще в 1969 г. во Вьетнаме.

Неоднократно боеприпасы объемного взрыва применялись в различных войнах 1980-90 годов. Так 6 августа 1982 года в период войны в Ливане израильский самолет сбросил такую бомбу (американского производства) на восьмиэтажный жилой дом. Взрыв произошел в непосредственной близости от здания на уровне 1-2 этажа. Здание было полностью разрушено. Погибло около 300 человек (в основном не в здании, а находившиеся поблизости от места взрыва).

В августе 1999 года в период агрессии Чечни против Дагестана на дагестанский аул Тандо, где скопилось значительное число чеченских боевиков, была сброшена крупнокалиберная бомба объемного взрыва. Захватчики понесли огромные потери. В последующие дни одно только появление одиночного (именно одиночного) штурмовика Су-25 над каким либо населенным пунктом заставляло боевиков спешно покидать аул. Появился даже термин «эффект Тандо».

Поскольку топливно-воздушная смесь боеприпасов объемного взрыва легко растекается и способна проникать в негерметичные помещения, а также формироваться в складках местности, простейшие защитные сооружения от них спасти не могут. Защита людей обеспечивается только укрытием в защитных сооружениях. Убежища должны работать в режиме полной изоляции.

Возникающая в результате взрыва ударная волна вызывает у людей такие поражения, как контузия головного мозга, множественные внутренние кровотечения вследствие разрыва соединительных тканей внутренних органов (печени, селезенки), разрыв барабанных перепонок уха.

Высокая поражающая способность, а также неэффективность существующих мер защиты от боеприпасов объемного взрыва послужили основанием для того, чтобы Организация Объединенных Наций квалифицировала такое оружие как негуманное средство ведения войны, вызывающее чрезмерные страдания людей. На заседании чрезвычайного комитета по обычным вооружениям в Женеве был принят документ, в котором такие боеприпасы признаны видом оружия, требующим запрещения международным сообществом.

Самые малоизвестные факты, касающиеся трагедии в Хиросиме и Нагасаки

Хотя трагедия в Хиросиме и Нагасаки известна всему миру, существуют факты, которые знают лишь немногие:

  1. Человек, сумевший выжить в аду. Хотя во время взрыва атомной бомбы в Хиросиме погибли все, кто находился рядом с эпицентром взрыва, одному человеку, который находился в подвале за 200 метров от эпицентра, удалось уцелеть;
  2. Война войной, а турнир должен продолжаться. На расстоянии менее 5 километров от эпицентра взрыва в Хиросиме проходил турнир по древней китайской игре «Го». Хотя взрыв разрушил здание, и многие участники получили ранения, турнир продолжился в тот же день;
  3. Способен выдержать даже ядерный взрыв. Хотя взрыв в Хиросиме разрушил большинство зданий, сейф в одном из банков не пострадал. После окончания войны в адрес американской компании, которая производила данные сейфы, пришло благодарственное письмо от управляющего банка в Хиросиме;
  4. Необыкновенное везение. Цутому Ямагути являлся единственным человеком на земле, который официально пережил два атомных взрыва. После взрыва в Хиросиме, он поехал на работу в Нагасаки, где ему опять удалось выжить;
  5. «Тыквенные» бомбы. Перед тем как начать атомную бомбардировку, США сбросили на Японию 50 бомб «Pumpkin», получивших такое название за сходство с тыквой;
  6. Попытка свержения императора. Император Японии мобилизовал всех граждан страны для «тотальной войны». Это означало, что каждый японец, включая женщин и детей, должен защищать свою страну до последней капли крови. После того, как устрашённый атомными взрывами император признал все условия Потсдамской конференции и позже капитулировал, японские генералы попытались совершить государственный переворот, который провалился;
  7. Встретившие ядерный взрыв и выжившие. Японские деревья «Гингко билоба» отличаются поразительной жизнестойкостью. После ядерной атаки на Хиросиму 6 таких деревьев выжили и продолжают расти до сих пор;
  8. Люди, мечтавшие о спасении. После взрыва в Хиросиме, выжившие люди сотнями бежали в Нагасаки. Из них удалось выжить 164 человекам, хотя официальным выжившим считается только Цутому Ямагути;
  9. При атомном взрыве в Нагасаки не погиб ни один полицейский. Оставшихся в живых блюстителей порядка из Хиросимы отправили в Нагасаки, для того чтобы обучить коллег основам поведения после ядерного взрыва. В результате этих действий, при взрыве в Нагасаки ни один полицейский не погиб;
  10. 25 процентов погибших жителей Японии были корейцами. Хотя считается, что все погибшие при атомных взрывах были японцами, на самом деле четверть из них была корейцами, которых японское правительство мобилизовало для участия в войне;
  11. Радиация – это сказки для детей. После атомного взрыва американское правительство долгое время скрывало факт наличия радиоактивного заражения;
  12. «Meetinghouse». Мало кто знает, что власти США не ограничились ядерными бомбардировками двух японских городов. Перед этим, применяя тактику ковровых бомбардировок, они уничтожили несколько японских городов. Во время операции «Meetinghouse» был практически уничтожен город Токио, а 300 000 человек из числа его жителей погибло;
  13. Не ведали, что творили. Экипаж самолёта, сбросившего ядерную бомбу на Хиросиму, составляли 12 человек. Из них только трое знали, что представляет собой ядерная бомба;
  14. Огонь во имя мира. В одну из годовщин трагедии (в 1964 году) в Хиросиме зажгли вечный огонь, который должен гореть, пока в мире остаётся хоть одна ядерная боеголовка;
  15. Пропавшая связь. После уничтожения Хиросимы, связь с городом полностью пропала. Только через три часа столица узнала, что Хиросима разрушена;
  16. Смертельный яд. Экипажу «Enola Gay» были вручены ампулы с цианистым калием, который он должен был принять в случае невыполнения задания;
  17. Радиоактивные мутанты. Знаменитый японский монстр «Годзилла» был придуман как мутация на радиоактивное заражение после ядерной бомбардировки;
  18. Тени Хиросимы и Нагасаки. Взрывы ядерных бомб обладали такой огромной мощностью, что люди буквально испарились, оставив на память о себе лишь тёмные отпечатки на стенах и полу;
  19. Символ Хиросимы. Первым растением, которое расцвело после ядерной атаки в Хиросиме, был олеандр. Именно он сейчас является официальным символом города Хиросима;
  20. Предупреждение перед ядерной атакой. Перед началом ядерной атаки авиация США сбросила на 33 японских города миллионы листовок, предупреждающих о грядущей бомбардировке;
  21. Радиосигналы. Американская радиостанция в Сайпане до последнего момента транслировала по всей Японии предупреждения о ядерной атаке. Сигналы повторялись каждые 15 минут.

Трагедия в Хиросиме и Нагасаки случилась 72 года назад, но до сих пор она служит напоминанием о том, что человечество не должно бездумно уничтожать себе подобных.

Воздушные взрывы

Этот вид может производиться на большом расстоянии от земли (в этом случае он называется высоким) или на маленьком (низким). Чем выше произошел взрыв, тем меньше у поднимающегося облака сходств с формой гриба, так как столб пыли с земли не достигает его.

Вспышка при таком виде является очень яркой, так что ее видно за сотни километров от эпицентра. Взрывающийся из нее огненный шар с температурой, измеряемой в миллионах градусов Цельсия, поднимается вверх и посылает мощное световое излучение. Все это сопровождается громким звуком, отдаленно напоминающим раскаты грома.

По мере охлаждения шар преобразуется в облако, которое создает поток воздуха, подхватывающий пыль с поверхности. Получившийся столб может достигнуть облака, если оно не очень высоко над землей. В дальнейшем облако начинает рассеиваться, и поток воздуха ослабевает.

В результате такого взрыва могут быть поражены и объекты в воздухе, и сооружения, и люди, находящиеся поблизости от него.

Лучшие комбинированные рюкзаки-стулья для охоты и рыбалки

Результаты

Чтобы определить характеристики воздушно-ядерного взрыва, были проведены испытания. Присутствующие при этом впоследствии описали увиденное зрелище. Они наблюдали за яркой светящейся точкой на расстоянии нескольких сотен километров. Затем она превратилась в огромный шар, раздался очень громкий звук, и на километры прокатилась ударная волна. Шар взорвался, оставив после себя двенадцатикилометровое облако в форме гриба. На месте взрыва остался кратер, на десятки метров простирающийся в глубину и ширину. Земля вокруг него на несколько сотен метров превратилась в безжизненную, изрытую почву.

Температура воздуха при ядерном взрыве существенно выросла, и сама атмосфера стала как будто плотнее. Это почувствовали даже очевидцы, находящиеся далеко от эпицентра в укрытии. Масштабы увиденного поражали, поскольку никто не предполагал, с какой мощью им предстоит столкнуться. Были сделаны выводы, что испытания прошли успешно.

Примечания

  1. «Артиллерия» В.П. Внуков, Государственное военное издательство Наркомата Обороны Союза ССР, 1938г
  2. «Tools of Violence: Guns, Tanks and Dirty Bombs»; Chris McNab, Hunter Keeter; 2008
  3. «Менеджмент в техносфере»; А. И. Орлов, В. Н. Федосеев, 2003г; Стр.232
  4. «A History of U.S. Nuclear Testing and Its Influence on Nuclear Thought, 1945-1963» David M. Blades, 2014
  5. «The Road to Trinity», Nichols K. D., 1987
  6. «Ядерное оружие и национальная безопасность» Под редакцией академика РАН В.Н.Михайлова 2008г
  7. «Гражданская оборона» В. Г. Атаманюк л. Г. Ширшев н. И. Акимов ,под ред. Д. И. Михаилика москва «высшая школа» 1986г.

Ядерная зима

  1. Падение температуры на один градус на один год, не оказывающее значительного влияния на человеческую популяцию.
  2. Ядерная осень — снижение температуры на 2-4 °C в течение нескольких лет; имеют место неурожаи, ураганы. Про ядерную осень см. ниже.
  3. Год без лета — интенсивные, но относительно короткие холода в течение года, гибель значительной части урожая, голод и эпидемии следующей зимой, исторический пример — следующий, 1816 год, после извержения вулкана Тамбора..
  4. Десятилетняя ядерная зима — падение температуры на всей Земле в течение 10 лет примерно на 15-20 °C. Этот сценарий подразумевается многими моделями ядерной зимы. Выпадение снега на большей части Земли, за исключением некоторых экваториальных приморских территорий. Массовая гибель людей от голода, холода, а также от того, что снег будет накапливаться и образовывать многометровые толщи, разрушающие строения и перекрывающие дороги.Вероятна гибель большей части населения Земли, однако 10-50 % (по разным оценкам) людей выживут и сохранят большинство технологий.В среднем, такой сценарий отбросит цивилизацию в развитии примерно на 20, максимум 50 лет. Риски: продолжение войны за тёплые места, неудачные попытки согреть Землю с помощью новых ядерных взрывов и искусственных извержений вулканов, переход в неуправляемый нагрев ядерного лета.Однако даже если допустить этот сценарий, окажется, что одного только мирового запаса рогатого скота (который замёрзнет на своих фермах и будет храниться в таких естественных «холодильниках») хватит на всё время прокорма всего выжившего человечества, а Финляндия и Норвегия, например, имеют стратегические запасы зерна для быстрого восстановления сельского хозяйства.
  5. Новый ледниковый период. Является крайне маловероятным сценарием продолжения предыдущего, в ситуации, когда отражающая способность Земли возрастает за счёт снега, и начнут нарастать новые ледяные шапки от полюсов и вниз, к экватору. Однако часть суши у экватора остаётся пригодной для жизни и сельского хозяйства. В результате цивилизации придётся радикально измениться. Трудно представить огромные переселения народов без войн. Много видов живых существ вымрет, но большая часть разнообразия биосферы уцелеет. Люди уже пережили несколько ледниковых периодов, которые могли начаться весьма резко в результате извержений супервулканов и падений астероидов (извержение вулкана Тоба). При таком развитии событий, возврат к исходному состоянию может занять около ста лет.
  6. Необратимое глобальное похолодание. Оно может быть следующей фазой ледникового периода, при наихудшем, но практически невероятном развитии событий. На всей Земле на геологически длительное время установится температурный режим, как в Антарктиде, океаны замёрзнут, суша покроется толстым слоем льда. Только высокотехнологичная цивилизация, способная строить огромные сооружения подо льдом, может пережить такое бедствие, но такая цивилизация могла бы, вероятно, найти способ обратить вспять этот процесс. Жизнь может уцелеть только в океанах.

Ссылки[править]

Примечания

  1. «Артиллерия» В.П. Внуков, Государственное военное издательство Наркомата Обороны Союза ССР, 1938г
  2.  (недоступная ссылка). Дата обращения: 5 апреля 2016.
  3. «Tools of Violence: Guns, Tanks and Dirty Bombs»; Chris McNab, Hunter Keeter; 2008
  4. «Менеджмент в техносфере»; А. И. Орлов, В. Н. Федосеев, 2003г; Стр.232
  5. «A History of U.S. Nuclear Testing and Its Influence on Nuclear Thought, 1945-1963» David M. Blades, 2014
  6. «The Road to Trinity», Nichols K. D., 1987
  7. «Ядерное оружие и национальная безопасность» Под редакцией академика РАН В.Н.Михайлова 2008г
  8. «Гражданская оборона» В. Г. Атаманюк л. Г. Ширшев н. И. Акимов ,под ред. Д. И. Михаилика москва «высшая школа» 1986г.
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector