Радиолокационные станции: история и основные принципы работы

Содержание:

Первые советские радары

В 1920-е годы ученые в СССР создали импульсную радиолокационную установку и смогли с помощью отраженного радиосигнала измерить расстояние до ионосферы. В 1925 году физики Введенский, Симанов, Халезов и Аренберг указали на возможность применения для радиолокации ультракоротких радиоволн. А в 1934 году в Ленинграде начались первые полноценные опыты с аппаратурой радиообнаружения – в январе радиолокационным методом на расстоянии 600 метров был найден самолет, летящий на высоте 150 метров.

Оборудование было создано в Центральной радиолаборатории группой Ю.К. Коровина при поддержке Ленинградского электротехнического института. Руководил экспериментом военный инженер М.М. Лобанов, который сыграл ключевую роль в становлении радиолокационного направления в промышленности. В том же 1934 году на Ленинградском радиозаводе были выпущены опытные образцы радиолокационных станций (РЛС) «Вега» и «Конус» для системы радиообнаружения самолетов «Электровизор» ученого П.К. Ощепкова. Таким образом, 1934 год можно считать годом рождения первого отечественного радара.

РЛС дальнего обнаружения «РУС-2».

В 1938 году начинается серийное производство РЛС РУС-1 и РУС-2 «Редут», которые станут основой противовоздушной обороны в начале Великой Отечественной войны. Благодаря установленной на крейсере «Молотов» радиолокационной станции были отражены первые атаки немецких бомбардировщиков на Севастополь 22 июня 1941 года. А месяц спустя комплекс РУС-2, расположенный в 100 км от Москвы, обнаружил 200 самолетов, летящих бомбить столицу. Тогда атака была отражена, немцы развернулись, потеряв 22 машины.

В работе над первыми станциями РУС-1 принимал участие выдающийся физик А.А. Пистолькорс, создатель научной школы радиоэлектроники. Станция РУС-2 «Редут» выпускалась на заводе №339 и стала самой массовой РЛС времен войны.

Экспортный вариант[править | править код]

Двигатель — агрегат, приводящий автомобиль в движение

Похожие статьи

Отзывы

Эстафета переходит в Германию

В 1904 году немец Христиан Хюльсмейер запатентовал устройство под названием телемобилоскоп. Этот прибор предполагалось использовать в судоходстве для обнаружения кораблей в условиях плохой видимости. Телемобилескоп был построен на основе искрового генератора радиоволн и в своей последней версии мог находить суда на расстоянии до 3 км. Однако устройством не заинтересовались ни гражданские, ни военные, предпочитая по старинке пользоваться на судах паровыми ревунами. По сути прибор Хюльсмайера был еще не радаром, а радиодетектором. Существовавшие на тот момент технологии еще не позволяли построить полноценный радиолокатор.

Схема установки антенны радиолокатора «Зеетакт» на немецкой подводной лодке

В 1920-1930-е годы немецкие ученые и инженеры достигли больших успехов в развитии военной радиолокации. В 1935 году физик Рудольф Кунхольд из Института технологий связи германских ВМС представил радиолокационный прибор с электронно-лучевым дисплеем. К концу 1930-х на его основе были созданы оперативные радиолокаторы «Зеетакт» для флота и «Фрейя» для ПВО.

Однако, несмотря на значительные научные результаты, руководство Третьего рейха рассчитывало на блицкриг и не спешило развивать национальную сеть радаров, считая их преимущественно оборонительными средствами. К 1940 году Германия располагала лишь небольшой сетью станций дальнего обнаружения. И только к концу 1943 года территорию Германии полностью накрыли защитным радиолокационным «колпаком».  

Есть ли Flightradar24 на русском языке?

Ресурс предоставляет всю информацию на английском языке. Версия Флайтрадар24 на русском пока отсутствует, но это не является большой преградой для русскоязычных пользователей. Дело в том, что интерфейс авиарадара интуитивно понятен и прост. Поэтому, невзирая на обширный функционал сервиса, вся информация, которая преподносится клиенту в цифровом выражении, как правило, легко воспринимается даже теми, кто совершенно не знаком с английским языком. В этой связи, тот факт, что Флайрадар 24 не транслирует данные полета на русском, не намного усложняет процесс его использования и не отпугивает неанглоязычных пользователей.

Интересные факты[править | править код]

  • Загоризонтальные радиолокационные станции сокращенно называют ЗГРЛС. Это самые большие и мощные радары которые только могут существовать, они имеют огромный радиус действия, а их отличительной чертой являются огромные антенны. Они существуют всего в небольших количествах, например на территории России действует всего 5 ЗГРЛС, а в США всего 4. Самое большое количество ЗГРЛС приходится на СССР, где существовало 6 таких станций. Правда 1 из них закончила свою эксплуатацию в 1986 году, а потом после повторного запуска и в 1991 году. Это была знаменитая ЗГРЛС «Дуга», располагающаяся на территории Чернобыля и на сегодняшний день полностью заброшена.
  • Иногда вблизи РЛС (в частности военных и загоризонтальных) могут располагаться другие вспомогательные системы, например станции возвратно-наклонного зондирования (ВНЗ).
  • На территории постсоветского пространства распространены легенды о якобы псионическом влиянии антенн на людей и их сознание, сравнимое с гипнозом и зомбированием. В связи с этим очень распространены истории про разного рода психотропные оружия и пси-установки, разрушительным образом сказывающиеся на попавшие под их влияние людей.
  • Подобное нашло отражении во вселенной игр S.T.A.L.K.E.R где также присутствует пси-антенны, оказывающие психотропное влияние на людей и любых других существ, сводя их с ума и, либо убивая, либо превращая в зомбированных. В играх подробно раскрывается тема психотропного оружия и пси-излучения в частности, которое генерируют эти антенны, некоторые из которых способны непосредственно контролировать попавших под это влияние людей и даже мутантов.

Малая РЛС

Большая РЛС

Пси-антенны

Добавить фото в галерею

Локации

Тип Локации
Глобальные Пустошь • Зона отчуждения • Остров • Город • Деревня • Болото • Гора
Локальные АЗС • АТП • Депо • Магазин • Аптека • Торговый центр • Лесничество • Военная база • Блокпост • Радар • Пещера • Полицейский участок • Шахта • Ферма • Канализация • Завод • Вокзал • Порт • Аэропорт • Больница • Лаборатория • Тюрьма • Метро • Свалка • Церковь • Замок • Бункер • Оазис
Уникальные Зона 51 • Чернобыль • Припять • Рейвенхольм • Хаб

Радиолокация

В современной технике явление отражения радиоволн различными препятствиями находит широкое применение. Высокочувствительные приемники улавливают и усиливают отраженный сигнал с целью получить информацию о том, где находится тот предмет, от которого отразилась волна.

Обнаружение и точное определение местонахождения объектов с помощью радиоволн называют радиолокацией. Радиолокационная установка — радиолокатор (радар) — состоит из передающей и приемной частей. В радиолокации используют электрические колебания сверхвысокой частоты (СВЧ) (108—1011 Гц). Мощный генератор СВЧ связан с антенной, которая излучает остронаправленную волну. В радиолокаторах, работающих на длинах волн порядка 10 см и меньше, такая волна создается антеннами в виде параболических зеркал. Для волн метрового диапазона антенны имеют вид сложных систем вибраторов. При этом острая направленность излучения получается вследствие интерференции волн. Антенна устроена так, что волны, посланные каждым из вибраторов, при сложении взаимно усиливают друг друга лишь в заданном направлении. В остальных направлениях при сложении волн происходит полное или частичное их взаимное гашение.

Отраженная волна улавливается той же излучающей антенной либо другой, тоже остронаправленной приемной антенной.

Для определения расстояния до цели применяют импульсный режим излучения. Генератор излучает волны кратковременными импульсами. Длительность каждого импульса составляет миллионные доли секунды, а промежуток между импульсами примерно в 1000 раз больше. Во время пауз принимаются отраженные волны.

Определение расстояния R производится путем измерения общего времени t прохождения радиоволн до цели и обратно. Так как скорость радиоволн v = 3•108 м/с — в атмосфере практически постоянна, то

\(~R = \frac {vt}{2}.\)

Вследствие всевозможных потерь радиоволн до приемника доходит лишь ничтожная часть той энергии, которую излучает передатчик. Поэтому приемники радиолокаторов усиливают принятый сигнал в 1012 раз. Такой чувствительный приемник, разумеется, должен быть отключен на время посылки импульса передатчиком.

Для фиксации посланного и отраженного сигналов используют электронно-лучевую трубку. В момент посылки импульса светлая точка, равномерно движущаяся по экрану электронно-лучевой трубки, отклоняется. На экране появляется «всплеск» около нулевой отметки шкалы дальности (рис. 1).

Рис. 1

Светящееся пятнышко на экране продолжает равномерно двигаться вдоль шкалы и в момент приема слабого отраженного сигнала снова отклоняется. Расстояние между «всплесками» на экране пропорционально времени прохождения сигнала и, следовательно, пропорционально расстоянию R до цели. Это позволяет про-градуировать шкалу непосредственно в километрах. Радиолокационные установки обнаруживают корабли и самолеты на расстояниях до нескольких сот километров. На их работу мало влияют условия погоды и время суток. В больших аэропортах локаторы следят за взлетающими и идущими на посадку самолетами. Наземная служба передает по радио пилотам необходимые указания и таким образом обеспечивает безопасность полетов. Корабли и самолеты также снабжены радиолокаторами, служащими для навигационных целей. С помощью локаторов наблюдают метеоры в верхних слоях атмосферы. Локаторы используются службой погоды для наблюдения за облаками. Наконец, локаторы используются в космических исследованиях.

Дальность действия РЛС

Основная статья: Основное уравнение радиолокации

Максимальная дальность действия РЛС зависит от ряда параметров и характеристик как антенной системы станции, мощности излучаемого сигнала, и чувствительности приёмника системы. В общем случае без учёта потерь мощности в атмосфере, помех и шумов дальность действия системы можно определить следующим образом:

Dmax=PnDaSaσ(4π)2Pn.min4{\displaystyle D_{max}={\sqrt{\frac {P_{n}D_{a}S_{a}\sigma }{\left(4\pi \right)^{2}P_{n.min}}}}},

где:

Pn{\displaystyle \;P_{n}} — мощность генератора;
Da{\displaystyle \;D_{a}} — коэффициент направленного действия антенны;
Sa{\displaystyle \;S_{a}} — эффективная площадь антенны;
σ{\displaystyle \;\sigma } — эффективная площадь рассеяния цели;
Pn.min{\displaystyle \;P_{n.min}} — минимальная чувствительность приёмника.

При наличии шумов и помех дальность действия РЛС уменьшается.

Работа нескольких РЛС в одном частотном диапазоне

На загруженных участках, где одновременно используются многочисленные РЛС (например, морские порты) вероятны совпадения частотных диапазонов. Это приводит к приему РЛС сигнала другой РЛС. В результате на экране появляются дополнительные точки, бросающиеся в глаза из-за своей геометрической правильности. Эффект может быть убран переходом на другую рабочую частоту.

Мнимое изображение

При отражении радиосигнала от массивного объекта возможно дальнейшее распространение к меньшим объектам с последующим отражением и попаданием в РЛС. Таким образом, путь, который прошел сигнал становится больше и на экране появляется мнимое изображение объекта, который на самом деле находится в другом месте

Такой эффект должен приниматься во внимание при нахождении вблизи крупных отражающих объектов, таких как мосты, гидротехнические сооружения и крупные суда

Многократное отражение

При размещении РЛС на большом судне возможен эффект многократного отражения сигнала. Сигнал РЛС отражается от близкого объекта, частично попадает обратно в РЛС, а частично отражается от корпуса суда. Таких отражений может быть много, амплитуда при каждом отражении уменьшается и сигнал будет восприниматься до тех пор, пока не будет достигнута пороговая чувствительность приемника. На экране радара будут видны несколько уменьшающихся с каждым разом объектов. Расстояние между ними пропорционально расстоянию от РЛС до объекта.

Атмосферные потери особенно велики в сантиметровом и миллиметровом диапазонах и вызываются дождем, снегом и туманом, а в миллиметровом диапазоне также кислородом и парами воды. Наличие атмосферы приводит к искривлению траектории распространения радиоволн (явление рефракции). Характер рефракции зависит от изменения коэффициента преломления атмосферы при изменении высоты. Из-за этого траектория распространения радиоволн искривляется в сторону поверхности земли.

Дальность действия РЛС

Основная статья: Основное уравнение радиолокации

Максимальная дальность действия РЛС зависит от ряда параметров и характеристик как антенной системы станции, мощности излучаемого сигнала, и чувствительности приёмника системы.
В общем случае без учёта потерь мощности в атмосфере, помех и шумов дальность действия системы можно определить следующим образом:

Dmax=PnDaSaσ(4π)2Pn.min4{\displaystyle D_{max}={\sqrt{\frac {P_{n}D_{a}S_{a}\sigma }{\left(4\pi \right)^{2}P_{n.min}}}}},

где:

Pn{\displaystyle \;P_{n}} — мощность генератора;
Da{\displaystyle \;D_{a}} — коэффициент направленного действия антенны;
Sa{\displaystyle \;S_{a}} — эффективная площадь антенны;
σ{\displaystyle \;\sigma } — эффективная площадь рассеяния цели;
Pn.min{\displaystyle \;P_{n.min}} — минимальная чувствительность приёмника.

При наличии шумов и помех дальность действия РЛС уменьшается.

Влияние помех

Работа нескольких РЛС в одном частотном диапазоне

На загруженных участках, где одновременно используются многочисленные РЛС (например, морские порты) вероятны совпадения частотных диапазонов. Это приводит к приему РЛС сигнала другой РЛС. В результате на экране появляются дополнительные точки, бросающиеся в глаза из-за своей геометрической правильности. Эффект может быть убран переходом на другую рабочую частоту.

Мнимое изображение

При отражении радиосигнала от массивного объекта возможно дальнейшее распространение к меньшим объектам с последующим отражением и попаданием в РЛС. Таким образом, путь, который прошел сигнал становится больше и на экране появляется мнимое изображение объекта, который на самом деле находится в другом месте

Такой эффект должен приниматься во внимание при нахождении вблизи крупных отражающих объектов, таких как мосты, гидротехнические сооружения и крупные суда.

Многократное отражение

При размещении РЛС на большом судне возможен эффект многократного отражения сигнала. Сигнал РЛС отражается от близкого объекта, частично попадает обратно в РЛС, а частично отражается от корпуса суда. Таких отражений может быть много, амплитуда при каждом отражении уменьшается и сигнал будет восприниматься до тех пор, пока не будет достигнута пороговая чувствительность приемника. На экране радара будут видны несколько уменьшающихся с каждым разом объектов. Расстояние между ними пропорционально расстоянию от РЛС до объекта.

Атмосферные потери особенно велики в сантиметровом и миллиметровом диапазонах и вызываются дождем, снегом и туманом, а в миллиметровом диапазоне также кислородом и парами воды.
Наличие атмосферы приводит к искривлению траектории распространения радиоволн (явление рефракции). Характер рефракции зависит от изменения коэффициента преломления атмосферы при изменении высоты. Из-за этого траектория распространения радиоволн искривляется в сторону поверхности земли.

Знакомство со стрелковой единицей

Автономные и встроенные ARPA

Первоначальная разработка и дизайн ARPA были автономными. Это потому, что они были разработаны как дополнение к обычному радару. Все функции ARPA были установлены на борту как отдельный блок, но их необходимо было связать с существующим оборудованием для получения основных данных радара. Основные преимущества заключались в экономии средств и времени для кораблей, уже оснащенных радаром. Это, конечно, была не идеальная ситуация, и в конечном итоге автономный блок пришел на смену интегрированному ARPA.

Большинство ARPA, произведенных в 21 веке, объединяют функции ARPA с дисплеем радара. Современный интегрированный ARPA объединяет обычные радиолокационные данные с компьютерными системами обработки данных в одно устройство. Основное эксплуатационное преимущество заключается в том, что данные радара и ARPA легко сопоставимы.

Гражданское применение

В сельском и лесном хозяйстве радиолокационные устройства незаменимы при получении информации о распределении и плотности растительных массивов, изучении структуры, параметров и видов почв, своевременном обнаружении очагов возгораний. В географии и геологии радиолокация используется для выполнения топографических и геоморфологических работ, определения структуры и состава пород, поиска месторождений полезных ископаемых. В гидрологии и океанографии радиолокационными методами осуществляется контроль состояния главных водных артерий страны, снегового и ледяного покрова, картографирование береговой линии.

Радиолокация — это незаменимый помощник метеорологов. РЛС легко выяснит состояние атмосферы на удалении десятков километров, а по анализу полученных данных составляется прогноз изменения погодных условий в той или иной местности.

Операторы

См. также

Российский внедорожник ГАЗ-3106

Литература

Двигатель ЗИЛ-164

Двигатель — у автомобиля ЗиЛ-164А он имеет маховик, приспособленный для работы с однодисковым сцеплением. На двигатель был установлен карбюратор К-82М, полностью взаимозаменяемый с К-82, а также новый топливный насос повышенной производительности без отстойника, унифицированный по крепежным местам со старым насосом. Производительность нового насоса 125 л/час — вместо 60 л/час у старого. Был использован вентилятор радиатора с увеличенным до 380 углом установки лопастей вместо применявшегося ранее с углом 300 , а также новый кожух вентилятора. Вместо трубчато-пластинчатого радиатора установлен трубчато-ленточный (змейковый радатор), полностью взаимозаменяемый со старым.

«Триумфальный» взгляд

Всевысотный обнаружитель 96Л6-1 (ВВО) — это зоркий «глаз» новейших зенитных ракетных систем С-400 «Триумф». РЛС умеет работать в нескольких режимах обзора. При возникновении необходимости аппаратура всевысотного обнаружителя сама поставит «фильтр» для определения противорадиолокационных ракет противника, а еще она способна «видеть» на больших расстояниях даже миниатюрные беспилотники.

mil.ru
Всевысотный обнаружитель 96Л6-1.

ВВО обеспечивает выдачу трех координат целей: азимута, угла места и дальности. Для обзора пространства в этой РЛС ученые нашей «оборонки» применили оригинальный метод. Он сочетает в себе электронное сканирование по углу места многолучевой диаграммой направленности антенны на разных несущих частотах и одновременное вращение по азимуту. Сканирование по углу места осуществляется фазовым способом в пределах от -3 град. до 60 град. При этом в азимутальной плоскости за счет углочастотной зависимости излучателей на Ш-образных волноводах одновременно формируется три прилегающих друг к другу луча.

Вращение антенного устройства по азимуту осуществляется с постоянной скоростью 10 об/мин. или 5 об/мин. Этот метод обзора пространства, совместно с набором сложнокодированных зондирующих сигналов, позволяет обеспечить одновременное обнаружение целей, летящих на больших и средних высотах, а также маловысотных целей на фоне сильных отражений от подстилающей поверхности.

ВВО совмещает функции низковысотного обнаружителя, обзорного радиолокатора и командного пункта. Он может работать как автономное средство целеуказания, но может и сопрягаться с КП АСУ или КП РТВ различных типов. Всевысотный обнаружитель предельно надежен и в условиях воздействия пассивных и активных помех.

ВВО поступили на вооружение радиотехнических полков Воздушно-космических сил, несущих боевое дежурство по противовоздушной обороне в Московской зоне и на всех воздушных рубежах нашей страны — от Калининграда до Камчатки. Также ВВО штатно стоит на вооружении зенитных ракетных полков с ЗРС С-300 и С-400.

Высшая «Каста» небесного контроля

В июне 2018 года пресс-служба Центрального военного округа (ЦВО) сообщила, что дислоцированная в Самарской области дивизия ПВО получила новую РЛС кругового обзора «Каста 2-2». Новая радиолокационная станция обладает высокой надежностью и безопасностью в эксплуатации, простотой технического обслуживания. Она высокомобильна: в ее состав входит четыре машины.

mil.ru
Трехкоординатная РЛС «Каста 2-2».

Трехкоординатная РЛС «Каста 2-2» способна контролировать воздушное пространство в автоматическом режиме: определять дальность, азимут, эшелоны высоты полета и трассовых характеристик самолетов, вертолетов, крылатых ракет, в том числе летящих на малых и предельно малых высотах. РЛС эффективно работает на фоне интенсивных отражений от поверхности, местных предметов и метеообразований.

См. также

Типы боеприпасов

См. также

Диапазоны РЛС

Основная статья: Диапазон частот

ОбозначениеIEEE / ITU Этимология Частоты Длина волны Примечания
HF англ. high frequency 3—30 МГц 10—100 м Радары береговой охраны, «загоризонтные» РЛС
P англ. previous < 300 МГц > 1 м Использовался в первых радарах
VHF англ. very high frequency 50—330 МГц 0,9—6 м Обнаружение на больших дальностях, исследования Земли
UHF англ. ultra high frequency 300—1000 МГц 0,3—1 м Обнаружение на больших дальностях (например, артиллерийского обстрела), исследования лесов, поверхности Земли
L англ. Long 1—2 ГГц 15—30 см наблюдение и контроль над воздушным движением
S англ. Short 2—4 ГГц 7,5—15 см управление воздушным движением, метеорология, морские радары
C англ. Compromise 4—8 ГГц 3,75—7,5 см метеорология, спутниковое вещание, промежуточный диапазон между X и S
X 8—12 ГГц 2,5—3,75 см управление оружием, наведение ракет, морские радары, погода, картографирование среднего разрешения; в США диапазон 10,525 ГГц ± 25 МГц используется в РЛС аэропортов
Ku англ. under K 12—18 ГГц 1,67—2,5 см картографирование высокого разрешения, спутниковая альтиметрия
K нем. kurz — «короткий» 18—27 ГГц 1,11—1,67 см использование ограничено из-за сильного поглощения водяным паром, поэтому используются диапазоны Ku и Ka. Диапазон K используется для обнаружения облаков, в полицейских дорожных радарах (24,150 ± 0,100 ГГц).
Ka англ. above K 27—40 ГГц 0,75—1,11 см Картографирование, управление воздушным движением на коротких дистанциях, специальные радары, управляющие дорожными фотокамерами (34,300 ± 0,100 ГГц)
mm 40—300 ГГц 1—7,5 мм миллиметровые волны, делятся на два следующих диапазона
V 40—75 ГГц 4,0—7,5 мм медицинские аппараты КВЧ, применяемые для физиотерапии
W 75—110 ГГц 2,7—4,0 мм сенсоры в экспериментальных автоматических транспортных средствах, высокоточные исследования погодных явлений

Модификации

ВОГ-25ИН

Индекс ГРАУ — 7П17И

. Практический выстрел с гранатой в инертном снаряжении, применяется для тренировок и обучения стрельбе,а также приведения ГП-25 к нормальному бою и проверке боя.

ВУС-25

(индекс 7П44У) — учебная граната, применяется для тренировок и обучения.

ВОГ-25П

Индекс ГРАУ — 7П24

, шифр «Подкидыш». Выстрел с «подпрыгивающей» осколочной гранатой, оснащённый взрывателемВГМ-П с вышибным зарядом и пиротехническим замедлителем. Принят на вооружение в 1979 году.

При попадании в преграду выстрел подскакивает и взрывается в воздухе на высоте около 1,5 метров. В сравнении с ВОГ-25, «подпрыгивающий» боеприпас позволяет эффективнее поражать лежащего и находящегося в траншее или окопе противника.

Описание:

  • Калибр 40 мм
  • Начальная скорость 76 м/с
  • Масса 275 г
  • Масса ВВ 42 г
  • Длина 125 мм
  • Дистанция взведения 10 — 40 м
  • Время самоликвидации не менее 14 с
  • Средняя высота разрыва 75 см

«Гвоздь»

40-мм выстрел «Гвоздь»

с газовой гранатой — предназначен для создания газового облака с непереносимо-допустимой концентрацией ирританта (раздражающего вещества) CS. Состоит на вооружении МВД РФ.

40-мм выстрел с дымовой гранатой ВДГ-40 «Нагар»

— применяется для постановки дымовой завесы.

ВОГ-25М

Модернизированный вариант выстрела ВОГ-25 с осколочной гранатой, частично унифицирован с ВОГ-25ПМ. Разработан в начале 2000-х годов.

ВОГ-25ПМ

Модернизированный вариант выстрела ВОГ-25П с «подпрыгивающей» осколочной гранатой, частично унифицирован с ВОГ-25М. Разработан в начале 2000-х годов.

АСЗ-40

40-мм выстрел акустического действия АСЗ-40 «Свирель»

. Светозвуковая граната нелетального действия служит для временного подавления психоволевой устойчивости живой силы противника. Состоит на вооружении МВД РФ.

В настоящее время имеет место тенденция к дальнейшему расширению типов боеприпасов. Так, на международной оружейной выставке «Defendory-2006» были представлены новые виды гранат:

  • ВГ-40МД — выстрел с дымовой гранатой
  • ВГС-40-1 — выстрел с сигнальной гранатой (красный огонь)
  • ВГС-40-2 — выстрел с сигнальной гранатой (зеленый огонь)
  • ВГ-40И — выстрел с осветительной гранатой

Однако нет сведений, что эти боеприпасы были приняты на вооружение или находятся в серийном производстве.

Прищипываем петунию для пышного цветения

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector