Электрическая мощность атомной электростанции в россии

Страницы

Какой арбалет лучше

Рейтинг, составленный нашей командой, не носит рекламного характера. Называя лучших, мы опирались на сухие факты, а также следовали принципу, что главное слово в выборе остается за большинством. Ограниченность информации не позволила нам рассмотреть всех претендентов, возможно наиболее интересных.

Самыми лучшими арбалетами 2021 года мы считаем:

  • Блочные – Barnett Ghost-420, сочетание легкости, балансировки, мощности;
  • Рекурсивные – Yarrow X-Ray, простота и практичность;
  • Подводные – JBL Reaper 100, гарантия обильного улова.

Согласно поправкам к закону «Об оружии» с 30 января 2021 года на территории Российской Федерации разрешена охота с применением луков, арбалетов, сила дуг которых не превосходит 27 и 43 кг соответственно.

История «мирного атома» в СССР и России

XX век навсегда останется в истории точкой отсчёта покорения «атома». Незадолго до его начала английские физики Джозеф Томсон и Эрнест Резерфорд использовали радиоактивные частицы при изучении процесса ионизации. Первая ядерная реакция была осуществлена Резерфордом во время бомбардировки атомов азота α-частицами в 1919 году.

Тремя годами позже в Петрограде под руководством академика Вернадского начал работу Радиевый институт. Учреждение объединило в себе все организации города, работающие в области радиологии. В плане практической деятельности институт осуществлял научное руководство радиевым рудником и заводом посёлка Бондюга в Татарстане.

На базе учебного заведения в 1933 году проводится Всесоюзная научная конференция, посвящённая проблемам ядерной физики. 1939 год ознаменовался открытием возможности урановой ядерной реакции, в разработке которой приняли участие выдающиеся советские учёные того времени. Через год Президиумом Академии Наук СССР утверждается программа научных исследований.

Вторая мировая война, осуществление управляемой ядерной реакции Э. Ферми в Чикаго, бомбардировка атомными бомбами японских городов Хиросима и Нагасаки и последующие события внесли жёсткие коррективы в работу учёных-ядерщиков. Во главе работ по урану ставят профессора И. В. Курчатова. Создаётся профильная лаборатория, затем институт, который существует и поныне. Чрезвычайная упорная работа приносит результаты:

  • 1944 год – первые килограммы чистого урана на территории Европы и Азии;
  • 1946 год – запущен первый в Евразии реактор;
  • 29 августа 1949 года на полигоне под Семипалатинском испытана первая в СССР атомная бомба;
  • 1953 год – водородная бомба;
  • 26 июня 1954 года первая в мире атомная электростанция (реактор «Атом мирный») в городе Обнинске, СССР, дала электрический ток.

Помимо чисто военных целей (бомбы, ракеты, подводные лодки), ядерная энергия начинает использоваться в народном хозяйстве и научных исследованиях. Кроме электростанции, в 60-ых годах прошлого века был запущен в работу исследовательский реактор на быстрых нейтронах, появился первый атомный ледокол – «Ленин».

Атомная энергетика России

Строительство атомных электростанций в нашей стране принимает широкие масштабы. 1958 год. Запущена первая очередь Сибирской АЭС (атомная электрическая станция), начато сооружение промышленной Белоярской атомной электростанции. В сентябре 1964 года вступает в строй первый энергоагрегат Нововоронежской АЭС. 1973 год – Ленинградская атомная станция.

Так продолжается вплоть до 1986 года, когда катастрофа планетарного масштаба на Чернобыльской электростанции вынудила пересмотреть доктрину ядерной энергетической безопасности. На территории СССР появилось 11 недостроенных атомных объектов. 

После распада Советского Союза в атомной отрасли произошёл целый ряд структурных изменений. Одно ведомство сменяло другое. В 1992 году путём преобразований было создано профильное министерство. Огромные экономические трудности привели к стагнации ядерной индустрии страны. Лишь благодаря высокой потребности в энергоресурсах и активной позиции специалистов атомные мощности и ресурсный человеческий потенциал в значительной степени удалось сохранить. В конце 1991 года в работе оставались 28 энергоблоков производительностью 20 242 МВт.

Для справки: общая мощность электростанций страны составляла на начало 1992 года 211 755 МВт. С 2000 года открывается новый этап атомной энергетики России.

Атомная электростанция: принцип работы

Каков принцип работы АЭС? Принцип работы АЭС базируется на цепной реакции деления атомов радиоактивного вещества – урана. Эта реакция происходит в активной зоне ядерного реактора.

Если не вдаваться в тонкости ядерной физики, принцип работы АЭС выглядит так: После пуска ядерного реактора из ТВЭЛов извлекаются поглощающие стержни, которые не дают урану вступить в реакцию.

Как только стрежни извлечены, нейтроны урана начинают взаимодействовать друг с другом.

Когда нейтроны сталкиваются, происходит мини-взрыв на атомном уровне, выделяется энергия и рождаются новые нейтроны, начинает происходить цепная реакция. Этот процесс выделяет тепло.

Тепло отдается теплоносителю. В зависимости от типа теплоносителя оно превращается в пар или газ, которые вращают турбину.

Турбина приводит в движение электрогенератор. Именно он по факту и вырабатывает электрический ток.

Если не следить за процессом, нейтроны урана могут сталкиваться друг с другом до тех пор, пока не взорвут реактор и не разнесут всю АЭС в пух и прах. Контролируют процесс компьютерные датчики. Они фиксируют повышение температуры или изменение давления в реакторе и могут автоматически остановить реакции.

Чем отличается принцип работы АЭС от ТЭС (теплоэлектростанций)?

Различия в работе есть только на первых этапах. В АЭС теплоноситель получает тепло от деления атомов уранового топлива, в ТЭС теплоноситель получает тепло от сгорания органического топлива (угля, газа или нефти). После того, как или атомы урана, или газ с углём выделили тепло, схемы работы АЭС и ТЭС одинаковы.

Принцип работы АЭС

Принцип работы атомной электростанции основан на действии ядерного (иногда называемого атомным) реактора – специальной объёмной конструкции, в которой происходит реакция расщепления атомов с выделением энергии.

Существуют различные виды ядерных реакторов:

  1. PHWR (также имеет название «pressurised heavy water reactor» — «тяжеловодный ядерный реактор»), используемый преимущественно на территории Канады и в городах Индии. В его основе используется вода, формула которой — D2O. Она выполняет функцию как теплоносителя, так и замедлителя нейтронов. Коэффициент полезного действия близится к 29%;
  2. ВВЭР (водо-водяной энергетический реактор). В настоящее время ВВЭР эксплуатируют только в СНГ, в частности, модель ВВЭР-100. Реактор имеет КПД равный 33%;
  3. GCR, AGR (графитоводный). Жидкость, содержащаяся в таком реакторе, выступает в роли теплоносителя. В данной конструкции замедлитель нейтронов — графит, отсюда и название. КПД составляет около 40%.

По принципу устройства реакторы также делят на:

  • PWR (pressurised water reactor) – устроен так, что вода, находящаяся под определенным давлением, замедляет реакции и подает тепло;
  • BWR (сконструирован таким образом, что пар и вода находятся в главной части устройства, не имея водяного контура);
  • РБМК (канальный реактор, имеющий особенно большую мощность);
  • БН (система работает за счет быстрого обмена нейтронами).

Устройство и структура атомной электростанции. Как работает АЭС?

Устройство АЭС

Типичная атомная электростанция состоит из блоков, внутри каждого из которых размещены различные технические приспособления. Самый значимый из таких блоков – комплекс с реакторным залом, обеспечивающий работоспособность всей АЭС. Он состоит из следующих устройств:

  • реактора;
  • бассейна (именно в нем хранят ядерное топливо);
  • машины, перегружающие топливо;
  • БЩУ (щит управления в блоках, с помощью него за процессом деления ядра могут наблюдать операторы).

Помимо прочего, имеется блок с бассейнами для отработанного топлива и специальные блоки, предназначенные для охлаждения (они называются градирнями). Кроме того, для охлаждения применяются распылительные бассейны и природные водоемы.

Принцип работы АЭС

На всех без исключения АЭС существует 3 этапа преобразования электрической энергии:

  • ядерная с переходом в тепловую;
  • тепловая, переходящая в механическую;
  • механическая, преобразовывающаяся в электрическую.

Уран отдает нейтроны, вследствие чего происходит выделение тепла в огромных количествах. Горячая вода из реактора прокачивается насосами через парогенератор, где отдает часть тепла, и снова возвращается в реактор. Поскольку эта вода находится под большим давлением, она остается в жидком состоянии(в современных реакторах типа ВВЭР около 160 атмосфер при температуре ~330 °C). В парогенераторе это тепло передается воде второго контура, которая находится под гораздо меньшим давлением (половина давления первого контура и менее), поэтому закипает. Образовавшийся пар поступает на паровую турбину, вращающую электрогенератор, а затем в конденсатор, где пар охлаждают, он конденсируется и снова поступает в парогенератор. Конденсатор охлаждают водой из внешнего открытого источника воды (например, пруда-охладителя).

И первый и второй контур замкнуты, что снижает вероятность утечки радиации. Размеры конструкций первого контура минимизированы, что также снижает радиационные риски. Паровая турбина и конденсатор не взаимодействуют с водой первого контура, что облегчает ремонт и уменьшает количество радиоактивных отходов при демонтаже станции.

Атомная энергетика России

После распада Советского Союза в 1991 году на территории России находились 28 энергоблоков, общая мощность которых превышала 20 тысяч МВт. За время с 1991 по 2015 годы АЭС России на карте страны получили в эксплуатацию еще 7 ядерных реакторов общей мощностью почти 7 тысяч МВт. В то же время после 2000х остановили работу Обнинской и Сибирской АЭС из-за окончания срока их эксплуатации.

Сегодня АЭС на карте России – это десять атомных станций, большинство из которых были открыты во времена Советского Союза и дополнены новыми реакторами уже в независимое время.

Карта АЭС России включает в себя 10 работающих атомных станций. Действующие атомные станции в России – Балаковская, Белоярская, Билибинская, Калининская, Кольская, Курская, Ленинградская, Нововоронежская, Ростовская, Смоленская.

На десяти АЭС России эксплуатируются 34 энергоблока общей мощностью 26 240 МВт. А именно:

  1. 18 энергоблоков с реакторами типа ВВЭР (водо-водяные реакторы), из них 11 реакторов ВВЭР–1000 и 6 атомных реакторов ВВЭР–440.
  2. 15 энергоблоков с канальными реакторами, 11 энергоблоков с реакторами типа РБМК–1000 (водо-водяные кипящие реакторы) и 4 энергоблока с реакторами типа ЭГП–6 (графито — водные реакторы).
  3. 1 энергоблок с реактором на быстрых нейтронах с натриевым охлаждением, БН–600.

Долгое время БН-600 был единственным реактором в мире, работающим на быстрых нейтронах. Этот реактор работает на уране-238, что экономит деньги на обогащении урана-235, кроме того, он способен работать на так называемом «отвальном уране», то есть остатках отработанного урана из привычных реакторов на медленных нейтронах. Реактор БН-600 работает на Белоярской АЭС России. Он был запущен в 1980 году. В апреле 2010 года было выдано разрешение на продление его эксплуатации до 2020 года. Атомные станции России на карте страны сосредоточены в основном на северо-западе. Карта АЭС России сегодня выглядит так: Атомные станции России производят около 18.6% от всей электроэнергетики страны. При этом в Европейской части России доля атомной электроэнергии – около 30%, на Северо-Западе страны и того больше – 37%.

Вклад АЭС России в мировую атомную энергетику – 6%. Для сравнения, в США производят 26% от мировой атомной энергетики, во Франции – 17%, в Японии – 12%. В Китае 4%. Россия в этом рейтинге на четвертом месте.

Атомные станции России, карта мировых АЭС.  Кроме проектирования и строительства ядерных реакторов в России ведется добыча и переработка урановых руд. Таким образом, АЭС в России получают местное урановое топливо. Расскажет о том, чем «питаются» АЭС России карта добычи российского урана. 

[править] Принцип работы атомной электростанции

Атомная электростанция представляет собой комплекс технических сооружений, предназначенных для выработки электрической энергии путем использования энергии, выделяемой при контролируемой ядерной реакции. Атомные электростанции различаются по типу реактора (на быстрых и на медленных нейтронах), по виду отпускаемой энергии (АЭС и АТЭЦ), по количеству контуров (одноконтурные, двухконтурные, трехконтурные). В зависимости от типа конструкции в состав атомной электростанции могут входить: ядерный реактор, турбина, конденсатор, электрогенератор, парогенератор и др.

Ядерная реакция возникает при делении ядра атома. Ядра атомов разделяют нейтроны, которые попадающие в них извне. При этом возникают новые нейтроны и осколки деления, которые имеют огромную кинетическую энергию. Эта энергия передается теплоносителю, который поступает в парогенератор, где нагревает до кипения воду. Полученный при кипении пар вращает турбины, связанные с электрогенератором.

Ядерный реактор

Ядерным реактором называется устройство, осуществляющее управляемую реакцию деления ядра. Ядерный реактор состоит из многих элементов, таких как: ядерное горючее, замедлитель нейтронов, теплоноситель для вывода энергии и устройство для регулирования скорости реакции. Энергия, выделяемая из ядерного топлива, нагревает теплоноситель, который затем следует в парогенератор. Реактор окружают защитной оболочкой, задерживающей гамма-излучение.

Обычно в качестве горючего для ядерного реактора используются ядра изотопа урана, наиболее эффективно захватывающее медленные нейтроны. Захват медленных нейтронов происходит с гораздо большей вероятностью чем быстрых, поэтому в ядерных реакторах, которые работают на естественном уране, используются замедлители (вода, тяжёлая вода, бериллий, графит).

В качестве теплоносителей в ядерных реакторах на быстрых нейтронах используют жидкие металлы и газы, они дают возможность получить на выходе из реактора высокие температуры, позволяющие вырабатывать в парогенераторах пар высоких, сверхвысоких и закритических параметров. Теплоносители в реакторах на тепловых(медленных) нейтронах используют обычную и тяжелую воду, водяной пар, двуокись углерода.

Устройство для вывода энергии состоит из регулирующих и компенсирующих стержней. Регулирующие стержни предназначены для поддержания критического состояния в любой момент времени, для остановки, пуска реактора, перехода с одного уровня мощности на другой. Все эти операции требуют малых изменений реактивности. Компенсирующие стержни постепенно выводятся из активной зоны реактора, обеспечивая критическое состояние в течение всего времени его работы.

Парогенератор

Парогенератором называется теплообменный аппарат, использующий теплоту первичного теплоносителя ядерного реактора, для производства водяного пара с давлением выше атмосферного. Теплоноситель из реактора, прокачивающийся насосами через парогенератор, отдает часть тепла, а затем снова возвращается в реактор. В парогенераторе это тепло передается воде второго контура, находящейся под гораздо меньшим давлением, вследствие чего вода закипает. Образовавшийся пар поступает на паровую турбину, которая вращает электрогенератор, а затем в конденсатор, где пар охлаждают. Пар конденсируется и снова поступает в парогенератор. В конденсаторе используется вода из внешнего открытого источника.

Турбина и электрогенератор

Подавляющее большинство паровых турбин, устанавливаемых на АЭС с водоохлаждаемыми реакторами предназначены для работы на насыщенном паре. Тепловая энергия пара при его расширении в проточной части турбины превращается в кинетическую энергию потока пара, которая используется для вращения ротора турбины электрогенератора.

Конденсатор

В конденсатор поступают перегретые пары теплоносителя, охлаждающиеся до температуры насыщения, они конденсируются и переходят в жидкую фазу. Для конденсации пара от каждой единицы его массы отводят теплоту равную удельной теплоте конденсации. В качестве охлаждающей жидкости на АЭС используется большое количество воды, поступающее из водохранилища.

Строительство реакторов

История

Исторический обзор статистики строительства атомных электростанций

Впервые цепная реакция ядерного распада была осуществлена 2 декабря 1942 года в Чикагском университете с использованием урана в качестве топлива и графита в качестве замедлителя. Первая электроэнергия из энергии ядерного распада была получена 20 декабря 1951 года в Национальной лаборатории Айдахо с помощью реактора на быстрых нейтронах EBR-I (Experimental Breeder Reactor-I). Произведённая мощность составляла около 100 кВт.

9 мая 1954 года на ядерном реакторе в г. Обнинск была достигнута устойчивая цепная ядерная реакция. Реактор мощностью 5 МВт работал на обогащённом уране с графитом в качестве замедлителя, для охлаждения использовалась вода с обычным изотопным составом. 26 июня в 17:30 энергия, выработанная здесь, стала поступать в потребительскую электросеть Мосэнерго.

Военные корабли США — атомные крейсера «Бейнбридж» и «Лонг Бич», и первый в мире авианосец с ядерным реактором «Энтерпрайз», самое длинное в мире военное судно, в 1964 году во время рекордного кругосветного путешествия, в течение которого они преодолели 49,190 км за 65 дней без дозаправки

В декабре 1954 года в США вошла в строй первая атомная подводная лодка «Наутилус».

В 1956 году в Великобритании начала работу пятидесятимегаваттная АЭС «Calder Hall-1». Далее последовали в 1957 году АЭС Шиппингпорт в США — 60 МВт и в 1959 году АЭС Маркуль во Франции — 37 МВт. В 1958 начала выдавать электроэнергию первая очередь второй советской АЭС — Сибирской, мощностью 100 Мвт, полная проектная мощность которой составляла 600 Мвт. В 1959 году в СССР спущено на воду первое в мире невоенное атомное судно — ледокол «Ленин».

Ядерная энергетика, как новое направление в энергетике, получила признание на проходившей в Женеве в августе 1955 года 1-й Международной научно-технической конференции по мирному использованию атомной энергии, положившей начало международному сотрудничеству в области мирного использования ядерной энергии и ослабившей завесу секретности над ядерными исследованиями, существовавшей со времён Второй мировой войны.

В 1960-х годах в США происходил перевод ядерной энергетики на коммерческую основу. Первой коммерческой АЭС стала «Yankee Rowe» мощностью 250 МВТ, проработавшая с 1960 до 1992 года. Первой атомной станцией в США, строительство которой финансировалось из частных источников, стала АЭС Дрезден.

В СССР в 1964 году вступили в строй Белоярская АЭС (первый блок 100МВт) и Нововоронежская АЭС (первый блок 240МВт). В 1973 году на Ленинградской АЭС в городе Сосновый бор был запущен первый высокомощный энергоблок (1000 МВт). Энергия пущенного в 1972 году в Казахстане первого промышленного реактора на быстрых нейтронах (150 МВт) использовалась для производства электроэнергии и опреснения воды из Каспийского моря.

В начале 1970-х годов существовали видимые предпосылки для развития ядерной энергетики. Потребность в электроэнергии росла, гидроэнергетические ресурсы большинства развитых стран были практически полностью задействованы, соответственно росли цены на основные виды топлива. Ситуацию усугубляло введение эмбарго на поставки нефти арабскими странами в 1973–1974 годах. Предполагалось снижение стоимости строительства АЭС.

Тем не менее, к началу 1980-х годов обозначились серьёзные экономические трудности, причинами которых стали стабилизация спроса на электроэнергию, прекращение роста цен на природное топливо, удорожание, вместо прогнозируемого удешевления, строительства новых АЭС.

Примечания

Похожие слова

Аналитик раскрыл две тайны следующего iPhone

Конструкция и действие ядерной установки

Сердцем любой установки является ядерный реактор, от которого напрямую зависит, как работает атомная электростанция. Внутри него происходит распад тяжелых ядер на более мелкие фрагменты. Находясь в состоянии сильного возбуждения, они начинают испускать нейтроны и другие частицы.

Воздействие нейтронов приводит к новым делениям, после чего их становится еще больше и в результате возникают непрерывные самоподдерживающиеся расщепления, известные как цепная реакция. Данный процесс осуществляется с выделением большого количества энергии, которая является основной целью всей работы АЭС и определяет ее мощность.

Примерно 85% от общего количества энергии высвобождается за очень короткий промежуток времени от начала реакции. Остальные 15% дает радиоактивный распад продуктов деления после излучения ими нейтронов. После распада атомы приходят в более стабильное состояние, а сам процесс продолжается и по окончании деления.

Типовой ядерный реактор включает в себя следующие компоненты:

  • Обогащенный уран и другое ядерное топливо.
  • Теплоноситель, с помощью которого выводится энергия, полученная при работе реактора.
  • Регулировочные стержни.
  • Замедлитель нейтронов.
  • Защитная оболочка против излучения.

В активную зону установки помещены ТВЭЛ – тепловыделяющие элементы, содержащие ядерное топливо. Они скомпонованы в кассеты, по нескольку десятков элементов. Внутри каждой кассеты имеются каналы, по которым циркулирует теплоноситель. С помощью ТВЭЛ можно регулировать уровень мощности реактора.

Принцип такой регулировки заключается в следующем:

  • Топливный стержень должен иметь определенную критическую массу, по достижении которой и начинается ядерная реакция.
  • Каждый отдельный стержень имеет массу, не дотягивающую до критической. Реакция будет происходить, если в активную зону будут помещены все стержни.
  • Путем погружения и извлечения топливных стержней, реакцию можно сделать управляемой, в том числе регулировать мощность.
  • Когда значение массы превышает критическое, происходит выброс нейтронов топливными веществами. Далее наступает столкновение выброшенных частиц с атомами.
  • Все это приводит к образованию нестабильного изотопа. Его распад наступает сразу же, с выделением тепла и энергии в виде гамма-излучения.

Во время столкновения кинетическая энергия частиц переходит друг к другу и число распадов еще больше увеличивается со скоростью геометрической прогрессии. При отсутствии управления такая реакция происходит мгновенно и сопровождается сильным взрывом, в реакторе этот процесс постоянно контролируется.

Типы реактивных двигателей

Все установки делятся на категории по используемому топливу для выработки энергии, по теплоносителю, замедлители, которая контролирует весь процесс проведения реакции. Для того чтобы показывать высокий уровень результативности, многие реакторы используют облегченную воду в виде Пара которая воздействует двумя разными способами.

Первый способ это подача теплого пара непосредственно в активной зоне. Уровень температуры такого энергоблока очень высок, в народе его называют кипящим блоком. Второй зависит от графитных материалов, с помощью которых вырабатывается газ, позволяющий отслеживать всю работу системы. На таком типе работы существует Балаковская станция.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector