Какие тайны хранят космические карлики?
Содержание:
- Распространение во Вселенной
- Что такое белый карлик: звезда или фантом?
- Предел Чандрасекара
- Наука движется вперед
- Особенности охоты
- Интересные факты
- Открытие странных объектов
- Вырождение газа
- Взгляд в будущее
- Глава 3. Астроликбез первого уровня
- Спектральная классификация
- Ответы на вопросы
- Астрономические феномены с участием белых карликов
- История открытия
- Белые карлики в тесных двойных системах
- Эволюция белых карликов
- Виды звезд в наблюдаемой Вселенной
Распространение во Вселенной
Большая часть звёзд, наблюдаемые невооружённым глазом – голубые или белые. На основании этого у наблюдателя складывается неверное впечатление, будто таких объектов больше всего во Вселенной. На самом деле наиболее распространёнными являются красные крошечные светила. Их просто не видно невооружённым глазом. Интересно, что красные карлики составляют около 80 % всего звёздного населения Галактики.
Ближайшая к Солнцу звезда рассматриваемого класса – Проксима Центавра. Она находится на расстоянии свыше четырёх световых лет от Земли (или 40 трлн. км). Её радиус составляет 15% от солнечного, а масса – 12%. Видимая звёздная величина этого космического объекта – 11.
В наблюдаемой части Вселенной находится слишком мало красных карликов, которые вовсе не содержат металлов. Между тем схема Большого взрыва предполагает, что в самых первых звёзд должны быть только легчайшие элементы и только немного лития. Если бы среди этих светил были красные карлики, то они были видимыми. Но такого не происходит. Учёные объясняют это тем, что красные карлики не могут формироваться и запустить термоядерную реакцию без участия металлов. Вот почему первые звёзды были очень огромными и тяжёлыми. Выбросив большое количество металлов, они погибли. Тяжёлые элементы пошли на образование более лёгких и крохотных звёзд.
Что такое белый карлик: звезда или фантом?
Только недавно, в XX веке ученым стало понятно, что белый карлик – это все, что осталось в космосе от обычной звезды. Изучение звезд с точки зрения термоядерной физики дало представление о процессах, которые бушуют в недрах небесных светил. Звезды, образовавшиеся в результате взаимодействия сил гравитации, представляют собой колоссальный термоядерный реактор, в котором постоянно происходят цепные реакции деления ядер водорода и гелия. В таких сложных системах темпы эволюции компонентов неодинаковы. Огромные запасы водорода обеспечивают жизнь звезды на миллиарды лет вперед. Термоядерные водородные реакции способствуют образованию гелия и углерода. Следом за термоядерным синтезом в дело вступают законы термодинамики.
Белый карлик
Схема термоядерного синтеза звезды
Термоядерный синтез истощает звезду. Водород иссякает, а гелий, как более массивный компонент может проэволюционировать дальше, достигнув нового состояния. Все это приводит к тому, что сначала красные гиганты образуются на месте обычной звезды, и звезда покидает главную последовательность. Таким образом, небесное светило, встав на путь своего медленного и неизбежного старения постепенно трансформируется. Старость звезды – это долгий путь в небытие. Все это происходит очень медленно. Белый карлик является небесным светилом, с которым вне пределов главной последовательности, происходит неизбежный процесс угасания. Реакция синтеза гелия приводит к тому, что ядро стареющей звезды сжимается, светило окончательно теряет свою оболочку.
Предел Чандрасекара
Давление вырожденного газа задается его плотностью. Оно, как и противодействующая сила гравитационного сжатия, имеет прямую зависимость (но в другой степени) от массы белых карликов и обратную – от их радиуса. То есть существуют такие значения массы, при которых давление будет уравновешивать гравитацию, что обеспечит стабильное существование карлика. Если же критическая величина 1,44 массы Солнца превышена, ядру звезды карликом не быть: давление не остановит сжатия, радиус будет продолжать уменьшаться, и сформируется нейтронная звезда.
Эта критическая масса носит наименование предела Чандрасекара в честь индийского физика, доказавшего в 1931 году ее существование. Чем больше масса карлика, тем меньше его радиус. Сила тяжести на таких звездах в десятки раз превышает таковую у поверхности Солнца. Впрочем, у Солнца в этом смысле все еще впереди: ему суждено через несколько миллиардов лет стать подобным карликом.
Наука движется вперед
Спектры белого карлика стали объектом изучения передовых умов мира астрономов. Как оказалось, из них можно получить довольно объемную информацию об особенностях небесных тел. Особенно интересными были наблюдения за звездными телами с избыточным инфракрасным излучением. В настоящее время удалось выявить около трех десятков систем такого типа. Основной их процент изучался посредством мощнейшего телескопа «Спитцер».
Ученые, наблюдая за небесными телами, установили, что плотность белых карликов существенно меньше этого параметра, свойственного гигантам. Также было выявлено, что избыточное инфракрасное излучение объясняется наличием дисков, сформированных специфическим веществом, способным поглощать энергетическое излучение. Именно оно затем излучает энергию, но уже в ином диапазоне волн.
Диски расположены исключительно близко и в некоторой степени влияют на массу белых карликов (которая не может превышать предела Чандрасекара). Внешний радиус получил название обломочного диска. Было высказано предположение, что таковой сформировался при разрушении некоторого тела. В среднем радиус по размеру сравним с Солнцем.
Если обратить внимание на нашу планетарную систему, станет ясно, что относительно недалеко от «дома» мы может наблюдать сходный пример – это окружающие Сатурн кольца, размер которых также сравним с радиусом нашего светила. Со временем ученые установили, что эта особенность – не единственная из тех, что роднит карлики и Сатурн
К примеру, и планета, и звезды обладают очень тонкими дисками, которым несвойственна прозрачность при попытке просвечивания светом.
Особенности охоты
Интересные факты
Открытие странных объектов
История изучения необычных звезд взяла старт в начале XX века, когда астрономы объединили результаты наблюдений нескольких близкорасположенных кратных звездных систем – 40 Эридана, Сириуса и Проциона. Выяснилось, что в каждой из этих систем один из компонентов характеризуется странным сочетанием свойств. Их орбитальные параметры свидетельствовали о достаточно большой массе, сравнимой с массой обычной звезды; спектральные характеристики указывали на высокую температуру. Светимость же этих объектов оказалась весьма малой – это были слабые, тусклые звездочки.
В 1917 году был открыт первый одиночный объект с подобными свойствами – звезда Ван Маанена, расположенная в 14 световых годах от Солнца. Масса ее составляет 0,7 солнечных масс, и при этом наше Солнце излучает более чем в пять тысяч раз мощнее, чем звезда Ван Маанена, получившая имя в честь своего первооткрывателя – голландского астронома, работавшего в США.
В 1922 году еще один голландский американец, В. Я. Лейтен, открывший несколько таких объектов, предложил для этого класса звезд название, которое мы употребляем и поныне: «белый карлик». Здесь термин «белый» означает «горячий» и связан со спектральными особенностями.
Вырождение газа
Масса этого ядра сравнима с массой Солнца, а вот размер на два порядка меньше, нежели у нашего светила. Отсюда вывод: плотность белых карликов огромна. Она может составлять от сотен килограммов до тысяч тонн на кубический сантиметр. Что представляет собой вещество в таком состоянии: твердое тело или, может быть, жидкость? Нет, твердые тела и жидкости не могут существовать при таких плотностях, намного превышающих наиболее компактную упаковку атомов в веществе. Это особое состояние вещества.
Вследствие гигантских давлений электронные оболочки атомов в этом газе разрушены. Вещество являет собой чудовищно сжатую плазму, поведение которой возможно описать только с применением квантовой механики. Электроны не могут иметь одни и те же квантовые состояния («запрет Паули»), в силу чего скорости их принимают самые разнообразные значения. В обычном газе температура связана со скоростью частиц. В данном же случае, какую бы температуру ни имело вещество, скорости электронов с ней никак не связаны и могут достигать релятивистских значений. Такой электронный газ называется вырожденным.
Взгляд в будущее
Современные технологии не стоят на месте, научное сообщество постоянно ищет пути решения вычислительных проблем. Чтобы оценить скорость развития вычислительной техники достаточно лишь проследить новинки среди планшетов, телефонов и ноутбуков. Вчерашний лидер рейтинга — завтра уже устаревшая на рынке модель. На сегодняшний день идет активное изучение и разработка параллельных систем, которые смогли бы заменить громоздкие суперкомпьютеры.
Не смотря на скорость и производительность супермашин, они имеют ряд проблем, над решением которых и трудится научное сообщество.
Сложности вычислительной супертехники:
громоздкий объем;
Для того чтобы производительность суперкомпьютера в десятки раз превышала обычный компьютер, их объединяют в одну систему. Таким образом, суперкомпьютер занимает огромные помещения и весит больше 1 тонны, что значительно усложняет его повсеместное использование в науке.
экологические проблемы;
У любой мощности есть своя цена. Ни для кого не секрет, что огромные вычислительные машины потребляют большое количество энергии и негативно влияют на окружающую среду. Так что еще одной ключевой проблемой для усовершенствования суперкомпьютера является возможность повышения эффективности охлаждения корпуса.
мощность.
Современное научное общество уже пришло к уменьшение компьютерного чипа до крохотной кнопки. Теперь дело стоит за специальной сборкой, которая поможет суперкомпьютеру быть меньше, быстрее, производительнее.
Что же ожидает нас в будущем с развитием суперкомпьютеров?
Ученые предполагают, что к 2025 году суперкомпьютер будет способен заменить человеческий интеллект. Создание искусственного интеллекта во многом автоматизирует большинство рутинных процессов. Искусственный разум будет способен заменить множество профессий, объединив их в одно целое.
К 2030 году суперкомпьютеры достигнут такой мощности, чтобы определять всю погоду на земле за 2 недели и предотвращать природные катаклизмы.
Виртуальная реальность — еще одна разработка научного сообщества. Мы уже знакомы с имитацией мира по компьютерным симуляторам. В ближайшем будущем виртуальная реальность — не выдумка, а реальная возможность супермашин.
Глава 3. Астроликбез первого уровня
Природа создает белые карлики на последней стадии активного существования совсем других звезд. Поэтому я начну с кратких сведений о законах звездной эволюции, которые еще не раз будут расширяться и уточняться.
Все звезды загораются одинаково, но кончают жизнь по-разному. Рождение звезды происходит в результате гравитационного стягивания чисто газового (как это было в юной Вселенной) или газопылевого (в следующие космические эпохи) облака и последующего поджога термоядерного горения водорода в его центральной зоне. Минимальная температура, необходимая для воспламенения водорода, составляет около 3 млн градусов. Согласно модельным вычислениям, для достижения этого порога масса протозвезды должна превысить 0,075 массы Солнца. Максимальные массы новорожденных звезд исчисляются сотнями солнечных, но, согласно некоторым астрофизическим моделям, на заре мироздания они могли достигать и 1 млн.
В финале своего существования звезды претерпевают различные превращения. Иногда они взрываются без остатка, а иногда дают начало объектам иной природы, которые принято называть компактными. Это белые карлики, нейтронные звезды и черные дыры. Первые в среднем в 2 млн раз плотнее Солнца, вторые — где-то в 300 трлн раз. О плотности черных дыр говорить не приходится, поскольку они вообще не содержат вещества даже в самых экзотических формах и представляют собой сгустки поля тяготения, которое (по крайней мере, без учета квантовых эффектов) достигает бесконечных значений. Поэтому белые карлики — самые «рыхлые» из космических компактов, так сказать субкомпакты.
По происхождению белые карлики — тлеющие, но все еще весьма горячие остатки не особенно массивных нормальных звезд, успевших сжечь свое термоядерное топливо и потому обреченных на постепенное затухание. Самые легкие звезды перерабатывают водород в гелий и на этом останавливаются, а светила потяжелее в конце жизни производят на свет более тяжелые элементы. Если начальная масса звезды не больше шести-восьми солнечных масс, то в ее ядре после гелия образуются лишь углерод и кислород. Звезды потяжелее (до 10–11 солнечных масс), как считается, дополнительно вырабатывают неон и магний. Затем основной термоядерный синтез прекращается, и звезда вступает в последнюю стадию своей активной жизни. На этом этапе она дожигает оставшееся ядерное топливо и в процессе катаклизмических раздуваний и сжатий сбрасывает внешние слои. В конце концов от нее остается углеродно-кислородное ядро (возможно, с небольшим включением более тяжелых элементов), окруженное горячей газовой оболочкой. Это и есть типичный белый карлик. Существуют также белые карлики с чисто гелиевыми ядрами — это остатки самых легких звезд. Все сказанное справедливо только для звезд, не входящих в тесные пары — о них разговор особый.
Масса большинства белых карликов составляет от половины до 1,3 массы Солнца, а средний радиус не превышает 0,01 солнечного. Правда, есть и выдающиеся (в обе стороны) примеры. Масса самого легкого на сегодняшний день белого карлика, J0917+4638, равна 0,17 массы Солнца. Интересно, что в то же время он и самый большой, а потому и самый рыхлый: его радиус составляет 8% солнечного (в надлежащем месте книги я вернусь к этому вроде бы явному парадоксу). Самый тяжелый из известных белых карликов, RE J 0317–853, как считается, тянет на 1,4 солнечной массы, что близко к максимально возможной массе этих объектов.
Температура ядра новорожденного карлика оценивается приблизительно в 100–150 млн градусов по шкале Кельвина — или просто кельвинов. Конечно, оно остывает, но чрезвычайно медленно. Как показывают расчеты, чтобы его температура уменьшилась в 25 раз, то есть достигла 4 млн кельвинов, нужно без малого полтора миллиарда лет. Время, за которое белый карлик охладится до температуры окружающего пространства (точнее, до температуры реликтового излучения), измеряется — самое меньшее — сотнями миллиардов лет. Кстати, первые теоретические оценки скорости остывания белых карликов были сделаны британским астрофизиком Леоном Местелом еще в начале 1950-х гг. и с тех пор неоднократно уточнялись.
Спектральная классификация
Звезды — громадные раскаленные шары, состоящие из газа. То, какими мы видим их с Земли, зависит от множества параметров. Например, звезды в действительности не мерцают. Убедиться в этом очень легко: достаточно вспомнить Солнце. Эффект мерцания возникает из-за того, что свет, идущий от космических тел к нам, преодолевает межзвездную среду, полную пыли и газа. Другое дело — цвет. Он является следствием нагрева оболочек (в особенности фотосферы) до определенных температур. Истинный цвет может отличаться от видимого, но разница, как правило, невелика.
Сегодня во всем мире используется гарвардская спектральная классификация звезд. Она является температурной и основывается на виде и относительной интенсивности линий спектра. Каждому классу соответствуют звезды определенного цвета. Разработана классификация была в обсерватории Гарварда в 1890-1924 гг.
Ответы на вопросы
- Чем отличается белый карлик от нейтронной звезды? Вся эволюция звезды основывается на первоначальной ее массе, от этого параметра и будет зависть ее светимость, продолжительность жизни и во что она превратится в конце. Для звезды массой 0,5-1,44 солнечной, жизнь закончится тем, что звезда расширится и превратится в красного гиганта, который сбросив свои внешние оболочки образует планетарную туманность оставит после себя лишь одно ядро, состоящее из вырожденного газа. Это упрощенный механизм того, как образуется белый карлик. Если масса звезды больше 1,44 массы Солнца (так называемый предел Чандрасекара, при котором звезда может существовать как белый карлик. Если масса будет превышать его, то она станет нейтронной звездой.), то звезда израсходовав весь водород в ядре начинает синтез более тяжелых элементов, вплоть до железа. Дальнейший синтез элементов, которые тяжелее железа, невозможен т.к. требует больше энергии чем выделяется в процессе синтеза и ядро звезды коллапсирует в нейтронную звезду. Электроны срываются с орбит и падают в ядро, там сливаются с протонами и в итоге образуются нейтроны. Нейтронное вещество весит в сотни и миллионы раз больше чем любое другое.
- Отличие белого карлика и пульсара. Все те же самые отличия что и в случае с нейтронной звездой, только стоит учитывать, что пульсар (а это и есть нейтронная звезда) еще и очень быстро вращается, десятки раз в секунду, а период вращения белого карлика составляет, на примере звезды 40 Eri B, 5 часов 17 минут. Разница ощутима!
- Из-за чего светятся белые карлики? Так термоядерные реакции уже не происходят все имеющееся излучение это тепловая энергия, так почему они светятся? По сути он медленно остывает, как раскаленное железо, которое сперва ярко белое, а затем краснеет. Вырожденный газ очень хорошо проводит тепло из центра и он остывает на 1% за сотни миллионов лет. Со временем остывание замедляется и он может просуществовать триллионы лет.
- Во что превращаются белые карлики? Возраст Вселенной слишком мал, для того чтобы могли образоваться, так называемые, черные карлики, конечной стадия эволюции. Так что видимых подтверждений у нас пока нет. На основе расчетов его остывания мы знаем лишь одно, что их продолжительность жизни, имеет поистине огромную, превышающую возраст Вселенной (13,7 млрд. лет) и теоретически составляющую триллионы лет.
-
Существует ли белый карлик с сильным магнитным полем как у нейтронной звезды? Некоторые из них обладают мощными магнитными полями, гораздо сильнее, чем любые созданные нами на Земле. Например, сила магнитного поля на поверхности Земли составляет всего от 30 до 60 миллионных долей тесла, в то время как напряженность магнитного поля белого карлика может достигать 100 000 тесла.
Но нейтронная звезда, обладает поистине сильным магнитным полем – 10*11 Тл и называется магнетаром! На поверхности некоторых магнетаров могут образовываться толчки, которые формируют колебания в звезде. Эти колебания часто приводят к огромным выбросам гамма-излучения магнетаром. Так, например, магнетар SGR 1900+14, который находится на расстоянии на 20 000 световых лет, в созвездии Орла, взорвался 27 августа 1998 г. Мощная вспышка гамма излучения была настолько сильной, что заставила выключить аппаратуру космического аппарата NEAR Shoemaker в целях ее сохранения.
Научно-популярный фильм о героях нашей статьи
Астрономические феномены с участием белых карликов
Рентгеновское излучение белых карликов
Температура поверхности молодых белых карликов — изотропных ядер звёзд после сброса оболочек, очень высока — более 2·105 K, однако достаточно быстро падает за счёт нейтринного охлаждения и излучения с поверхности. Такие очень молодые белые карлики наблюдаются в рентгеновском диапазоне (например, наблюдения белого карлика HZ 43 спутником ROSAT).
Температура поверхности наиболее горячих белых карликов — 7·104 K, наиболее холодных — ~5·10³ K.
Аккреция на белые карлики в двойных системах
Файл:SN1572.Companion.jpg
- Аккреция на белые карлики богатого водородом вещества приводит к его накоплению на поверхности (состоящей преимущественно из гелия) и разогреву до температур реакции синтеза гелия, что, в случае развития тепловой неустойчивости, приводит к взрыву, наблюдаемому как вспышка новой звезды.
История открытия
Видимое движение Сириуса по небесной сфере
В 1844 году немецкий астроном и математик Фридрих Бессель при наблюдении Сириуса обнаружил небольшое отклонение звезды от прямолинейного движения, и сделал предположение о наличии у Сириуса невидимой массивной звезды-спутника.
Его предположение было подтверждено уже в 1862 году, когда американский астроном и телескопостроитель Альван Грэхэм Кларк, занимаясь юстировкой самого крупного в то время рефрактора, обнаружил возле Сириуса неяркую звезду, которую впоследствии окрестили Сириус Б.
Белый карлик Сириус Б имеет низкую светимость, а гравитационное поле воздействует на своего яркого компаньона довольно заметно, что свидетельствует о том, что у этой звезды крайне малый радиус при значительной массе. Так впервые был открыт вид объектов, названный белыми карликами. Вторым подобным объектом была звезда Маанена, находящаяся в созвездии Рыб.
Белые карлики в тесных двойных системах
Карлики могут входить в состав двойных систем, звезды-компоненты которых сближены настолько, что обмениваются веществом. В этом случае массивный плотный карлик будет перетягивать на себя вещество компаньона.
Водород, попадающий от соседней звезды на горячую поверхность карлика, разогревается до температуры, при которой начинается термоядерный синтез. В этом случае наблюдается вспышка, называемая новой звездой.
Если же при падении водорода на карлик его масса превзойдет предел Чандрасекара, происходит коллапс, сопровождающийся взрывом сверхновой типа Ia. Наблюдение таких сверхновых в далеких галактиках представляет большой интерес, поскольку по яркости вспышек, имеющих одинаковые характеристики, устанавливают расстояние до галактик.
Эволюция белых карликов
Вне главной последовательности происходит процесс угасания звезды. Под воздействием сил гравитации нагретый газ красных гигантов и сверхгигантов разлетается по Вселенной, образуя молодую планетарную туманность. Через сотни тысяч лет туманность рассеивается, а на ее месте остается вырожденное ядро красного гиганта белого цвета. Температуры такого объекта достаточно высоки от 90000 К, оценивая по линии поглощения спектра и до 130000 К, когда оценка осуществляется в пределах рентгеновского спектра. Однако ввиду небольших размеров, остывание небесного светила происходит очень медленно.
Планетарная туманность
Та картина звездного неба, которую мы наблюдаем, имеет возраст в десятки-сотни миллиардов лет. Там, где мы видим белые карлики, в пространстве уже возможно существует другое небесное тело. Звезда перешла в класс черного карлика, конечный этап эволюции. В действительности на месте звезды остается сгусток материи, температура которого равняется температуре окружающего пространства. Главная особенность этого объекта — полное отсутствие видимого света. Заметить такую звезду в обычный оптический телескоп достаточно трудно ввиду слабой светимости. Основным критерием обнаружения белых карликов является наличие мощного ультрафиолетового излучения и рентгеновских лучей.
Все известные белые карлики в зависимости от своего спектра делятся на две группы:
- объекты водородные, спектрального класса DA, в спектре которых отсутствуют линии гелия;
- гелиевые карлики, спектральный класс DB. Основные линии в спектре приходятся на гелий.
Этап эволюции, в результате которой появляется белый карлик, является последним для немассивных звезд, к которым относится и наша звезда Солнце. На данном этапе звезда обладает следующими характеристиками. Несмотря на столь маленькие и компактные размеры звезды, ее звездное вещество весит ровно столько, сколько требуется для ее существования. Другими словами, белые карлики, которые имеют радиусы в 100 раз меньше радиуса солнечного диска, имеют массу равную массе Солнца или даже весят больше, чем наша звезда.
Этого говорит о том, что плотность белого карлика в миллионы раз выше плотности обычных звезд, находящихся в пределах главной последовательности. К примеру, плотность нашей звезды 1,41 г/см³, тогда как плотность у белых карликов может достигать колоссальных значений 105-110 г/см3.
Сириус B
По яркости света Сириус А в 22 раза превышает яркость нашего Солнца, а вот ее сестра Сириус В светит тусклым светом, заметно уступая по яркость своей ослепительной соседке. Обнаружить присутствие белого карлика удалось благодаря снимкам Сириуса, сделанным рентгеновским телескопом Чандра. Белые карлики не обладают ярко выраженным световым спектром, поэтому принято считать такие звезды достаточно холодными темными космическими объектами. В инфракрасном и в рентгеновском диапазоне Сириус В светит значительно ярче, продолжая излучать огромное количество тепловой энергии. В отличие от обычных звезд, где источником рентгеновских волн служит корона, источником излучения у белых карликов является фотосфера.
Находясь вне главной последовательности по распространенности эти звезды не самые распространенные объекты во Вселенной. В нашей галактике на долю белых карликов приходится всего 3-10% небесных светил. Для этой части звездного населения нашей галактики неопределенность оценки затрудняет слабость излучения в видимой области поляры. Другими словами, свет белых карликов не в состоянии преодолеть большие скопления космического газа, из которых состоят рукава нашей галактики.
Звездное кладбище в нашей галактике
Виды звезд в наблюдаемой Вселенной
Во Вселенной существует множество различных звезд. Большие и маленькие, горячие и холодные, заряженные и не заряженные. В этой статье мы назовем основные виды звезд, а также дадим подробную характеристику Жёлтым и Белым карликам.
- Жёлтый карлик. Жёлтый карлик – тип небольших звёзд главной последовательности, имеющих массу от 0,8 до 1,2 массы Солнца и температуру поверхности 5000–6000 K. Подробнее об этом типе звезд нем смотрите ниже.
- Красный гигант. Красный гигант – это крупная звезда красноватого или оранжевого цвета. Образование таких звезд возможно как на стадии звездообразования, так и на поздних стадиях их существования. Крупнейшие из гигантов превращаются в красных супергигантов. Звезда под названием Бетельгейзе из созвездия Орион – самый яркий пример красного супергиганта.
- Белый карлик. Белый карлик – это то, что остаётся от обычной звезды с массой, не превышающей 1,4 солнечной массы, после того, как она проходит стадию красного гиганта. Подробнее об этом типе звезд нем смотрите ниже.
- Красный карлик. Красные карлики – самые распространённые объекты звёздного типа во Вселенной. Оценка их численности варьируется в диапазоне от 70 до 90% от числа всех звёзд в галактике. Они довольно сильно отличаются от других звезд.
- Коричневый карлик. Коричневый карлик – субзвездные объекты (с массами в диапазоне примерно от 0,01 до 0,08 массы Солнца, или, соответственно, от 12,57 до 80,35 массы Юпитера и диаметром примерно равным диаметру Юпитера), в недрах которых, в отличие от звезд главной последовательности, не происходит реакции термоядерного синтеза c превращением водорода в гелий.
- Субкоричневые карлики. Субкоричневые карлики или коричневые субкарлики – холодные формирования, по массе лежащие ниже предела коричневых карликов. Масса их меньше примерно одной сотой массы Солнца или, соответственно, 12,57 массы Юпитера, нижний предел не определён. Их в большей мере принято считать планетами, хотя к окончательному заключению о том, что считать планетой, а что – субкоричневым карликом научное сообщество пока не пришло.
- Черный карлик. Черные карлики – остывшие и вследствие этого не излучающие в видимом диапазоне белые карлики. Представляет собой конечную стадию эволюции белых карликов. Массы черных карликов, подобно массам белых карликов, ограничиваются сверху 1,4 массами Солнца.
- Двойная звезда. Двойная звезда – это две гравитационно связанные звезды, обращающиеся вокруг общего центра масс.
- Новая звезда. Звезды, светимость которых внезапно увеличивается в 10 000 раз. Новая звезда представляет собой двойную систему, состоящую из белого карлика и звезды-компаньона, находящейся на главной последовательности. В таких системах газ со звезды постепенно перетекает на белый карлик и периодически там взрывается, вызывая вспышку светимости.
- Сверхновая звезда. Сверхновая звезда – это звезда, заканчивающая свою эволюцию в катастрофическом взрывном процессе. Вспышка при этом может быть на несколько порядков больше чем в случае новой звезды. Столь мощный взрыв есть следствие процессов, протекающих в звезде на последний стадии эволюции.
- Нейтронная звезда. Нейтронные звезды (НЗ) – это звездные образования с массами порядка 1,5 солнечных и размерами, заметно меньшими белых карликов, порядка 10-20 км в диаметре. Они состоят в основном из нейтральных субатомных частиц – нейтронов, плотно сжатых гравитационными силами. В нашей Галактике, по оценкам ученых, могут существовать от 100 млн до 1 млрд нейтронных звёзд, то есть где-то по одной на тысячу обычных звёзд.
- Пульсары. Пульсары – космические источники электромагнитных излучений, приходящих на Землю в виде периодических всплесков (импульсов). Согласно доминирующей астрофизической модели, пульсары представляют собой вращающиеся нейтронные звёзды с магнитным полем, которое наклонено к оси вращения. Когда Земля попадает в конус, образуемый этим излучением, то можно зафиксировать импульс излучения, повторяющийся через промежутки времени, равные периоду обращения звезды. Некоторые нейтронные звёзды совершают до 600 оборотов в секунду.
- Цефеиды. Цефеиды – класс пульсирующих переменных звёзд с довольно точной зависимостью период-светимость, названный в честь звезды Дельта Цефея. Одной из наиболее известных цефеид является Полярная звезда. Приведенный перечень основных видов (типов) звезд с их краткой характеристикой, разумеется, не исчерпывает всего возможного многообразия звезд во Вселенной.