Загадки голубых звезд сверхгигантов

Содержание:

Нейтронные звёзды

Это ядра взорвавшихся звёзд, в которых дальнейшее сжатие приводит к тому, что это ядро полностью будет состоять из нейтронов. Массы таких звёзд составляют, приблизительно от 1,44 масс Солнца (предел Чандрасекара), до предела Оппенгеймера-Волкова (см. терминологию сайта), который будет разный для каждой звезды. Радиусы таких звёзд ничтожно малы, около 10-20 км.

Нейтронные звёзды обладают сильным магнитным полем и неимоверно быстрым вращением, около тысячи оборотов за секунду! Вследствие этого существуют такие виды звёзд нейтронного типа, как: рентгеновские пульсары и радиопульсары. Излучают они соответственно в рентгеновском и радио- диапазонах длин волн.

Считается, что нейтронные звёзды рождаются вследствие взрыва сверхновой звезды.

2. Действие. (Action)

При горении белый фосфор развивает температуру до 1300 °с. температура горения фосфорных боеприпасов зависит от ряда условий, типа используемых боеприпасов, температура и влажность т. д. и 900 — 1200 °с. температура горения зажигательных боеприпасов с зарядом из белого фосфора и горючего вещества составляет 800 — 900 °С. горение сопровождается обильным выделение густого, едкого белого дыма и продолжается до тех пор, пока весь фосфор не выгорит или пока вы не остановите кислорода.

Белый фосфор нанести вред незащищенной и укрытой живой силы и вывод из строя техники и вооружения. применение белого фосфора также приводит к пожарам и отдельных пожаров, которые отвлекают силы и средства для тушения пожаров, что приведет к дополнительным материальным ущербом, трудно двигаться, ограничивать видимость, благодаря чему образуются в результате пожаров удушливых и ядовитых газов служат дополнительным поражающим фактором.

В контакте с горящими кожу человека, белый фосфор вызывает тяжелые ожоги.

Белый фосфор ядовит, смертельная доза для человека-101217″ грамм. белый фосфор хорошо растворяется в жидкостях организма и при попадании внутрь быстро всасывается красного фосфора нерастворимы и поэтому относительно malaguit.

Острое отравление возникает при вдыхании паров белого фосфора и или, когда вы нажмете их в желудочно-кишечном тракте. отравление характеризуется болью в животе, рвота, светятся в темноте рвота, испуская запах чеснока, понос. еще один симптом острого отравления белым фосфором является сердечная недостаточность.

Ссылки

Солнце как красный гигант[править | править код]

Файл:Solar Life Cycle.svg

Жизненный цикл Солнца

В настоящее время Солнце является звездой среднего возраста, и возраст Солнца оценивается приблизительно в 4,57 миллиарда лет. Солнце будет оставаться на главной последовательности ещё приблизительно 5 миллиардов лет, постепенно увеличивая свою яркость на 10 % каждый миллиард лет, после чего водород в ядре будет исчерпан.

На стадии красного гиганта Солнце будет находиться приблизительно 100 миллионов лет, после чего превратится в планетарную туманность с белым карликом в центре; планетарная туманность рассеется в межзвёздной среде в течение нескольких тысячелетий, а белый карлик будет остывать в течение многих миллиардов лет.

Солнце как красный гигант

Легендарный нож

Разработки

Сам бронебойный снаряд предназначался для борьбы с бронетехникой противника, выводя её из строя и уничтожая экипаж. Однако, броня на технике становилась всё лучше, увеличивалась толщина, в передней части появился наклон, новая конструкция топливного бака, и обычный бронебойный снаряд был неэффективным. Изначально реакцией на улучшение брони стало увеличение скорости снаряда. Тогда же было установлено, что стальной дроби, как правило, чтобы разрушить броню, необходима скорость около 823 м/с. Так был разработан бронебойный снаряд с бронебойным наконечником. Наконечник распределял энергию по бокам снаряда, уменьшая тем самым его разрушение. Единственным минусом было то, что структура наконечника на снаряде уменьшала аэродинамическую эффективность, что сказывалось на точности и дальности удара. Позже эту проблему решили установкой обтекаемого баллистического колпачка, позволявшего увеличить точность и степень проникновения, а также уменьшить в полете потерю скорости.

В начале Второй мировой войны такие снаряды, выпускаемые из высокоскоростных пушек, имели достаточную бронебойность с близкого расстояния (порядка 100 м). При увеличении расстояния (500—1000 м) из-за плохой баллистической формы и высокого сопротивления бронебойность падала. Позже, с близкого расстояния (100 м) снаряды крупнокалиберных высокоскоростных пушек (75-128 мм) смогли пробить гораздо большую толщину брони. Испытания на британских пушках QF 17 pounder, стрелявших по захваченным немецким Пантерам, показало, что бронебойные снаряды с наконечниками были более точными, чем снаряды с отделяющимся поддоном.

Варианты

Образование

Звезда становится гигантом после того, как весь водород, доступный для реакции в ядре звезды, был использован, и, как следствие, звезда оставила главную последовательность. Звезда, начальная масса которой не превышает примерно 0,4 солнечных масс, никогда не станет звездой-гигантом. Это происходит потому, что вещество внутри тел таких звёзд сильно перемешано конвекцией, и поэтому водород продолжает участвовать в реакции до тех пор, пока не израсходуется полностью, — и в этой точке такая звезда превращается в белого карлика, состоящего преимущественно из гелия. Это истощение звёздного водородного термоядерного топлива, тем не менее, по прогнозам может занять времени значительно больше, чем прошло до сегодняшнего дня с момента образования Вселенной.

Внутренняя структура подобной Солнцу звезды и красного гиганта.

Если масса звезды превышает этот минимум, то, когда она потребит весь водород, доступный в её ядре для термоядерных реакций, — ядро звезды начнёт сжиматься. Теперь водород реагирует с гелием в оболочке вокруг богатого гелием ядра и часть звезды за пределами оболочки расширяется и охлаждается.
В этой стадии своей эволюции, отмеченной как субгиганты на диаграмме Герцшпрунга-Рассела, светимость звезды остаётся примерно постоянной и температура её поверхности понижается. В конце концов звезда начинает подниматься до красного гиганта на диаграмме Герцшпрунга-Рассела. В этой точке температура поверхности звезды (уже, как правило, красного гиганта) будет оставаться примерно постоянной, тогда как её светимость и радиус — существенно расти. Ядро звезды продолжит сжиматься, повышая свою температуру, § 5.9..

Если масса звезды, лежащей на главной последовательности, была менее примерно 0,5 солнечных масс, считается, что она никогда не достигнет центральных температур, достаточных для термоядерного «горения» гелия, стр. 169.. Поэтому такая звезда и далее будет красным гигантом с термоядерным «горением» водорода, пока не начнёт превращаться в гелиевый белый карлик, § 4.1, 6.1.. В противной ситуации, когда температура звездного ядра достигает примерно 108 K, гелий вступает в термоядерную реакцию с углеродом и кислородом в ядре,§ 5.9, chapter 6.. Энергия образуется за счёт реакции с гелием, вызывающей расширение ядра. Это создаёт давление на ближайшую оболочку из горящего водорода, что снижает уровень его энергии. Светимость звезды уменьшается, её внешняя оболочка снова сжимается и звезда покидает ветвь красных гигантов на диаграмме. Последующая эволюция звезды зависит от её массы. Если масса звезды не очень велика, то звезда будет расположена на горизонтальном отрезке диаграммы Герцшпрунга-Рассела, или же местоположение звезды может меняться петлеобразно, chapter 6.. Если звезда не тяжелее примерно 8 солнечных масс, то она в результате исчерпает весь свой гелий в ядре и в реакцию вступит гелий в оболочке вокруг углеродного ядра звезды. Тогда светимость звезды снова возрастет и станет как у гиганта на асимптотическом отрезке диаграммы, и звезда поднимется по асимптотической ветви диаграммы Герцшпрунга-Рассела. После того, как звезда избавится от большей части своей массы, её ядро станет таким же, как у углеродно-кислородного белого карлика, § 7.1-7.4..

У звёзд главной последовательности с большими массами (около 8 солнечных масс), p. 189 в результате в реакцию вступит углерод. Светимость этих звёзд после схода с главной последовательности значительно не увеличится, но они станут более красными. Они могут превратиться в красных сверхгигантов или потерять массу, что будет способствовать их эволюции в голубого сверхгиганта, pp. 33–35;  . В конечном итоге они станут белыми карликами, состоящими из кислорода и неона или пройдут через стадию сжатия ядра, станут сверхновыми с последующим образованием нейтронных звёзд или чёрных дыр, § 7.4.4-7.8..

Как называется самая большая звезда во Вселенной

Собственно говоря, самая большая звезда во Вселенной это UY Щита. По праву, этот яркий гипергигант спектрального класса M4Ia занимает лидирующую позицию среди крупнейших звёздных представителей.По оценке учёных, радиус UY Щита равен более чем 1700 радиусам нашего главного светила. Хотя её масса составляет примерно 10 солнечных. Что интересно, средняя плотность этого гипергиганта практически в миллион раз меньше плотности воздуха, которым мы дышим. Другими словами, насыщенность материи очень похожа на космический вакуум.

Причем от нас UY Щита находится на расстоянии 9500 световых лет и мы различаем её на небе, как одну из множества тусклых звёздочек.Несмотря на это, по значению светимости она также превышает Солнце. Если точнее, то в 340 тысяч раз. В сравнении с ней наше центральное светило-крошечное тельце. Тогда, что такое Земля? Можно сказать, всего лишь маленькое пятнышко в космическом пространстве.

UY Щита

Кроме того, UY Щита относится к переменным пульсирующим телам. Сейчас она приближается к завершающей стадии эволюции. Так как в ней уже началось горение гелия и других более тяжёлых элементов. Считается, что она станет жёлтым сверхгигантом, а в будущем превратится в голубую переменную или даже звезду Вольфа-Райе. В результате взорвётся сверхновой и, скорее всего, в итоге сформируется в нейтронный объект.

Как появляются звезды-гиганты или немного о небесной эволюции

Астрономам известно множество звезд различных типов: горячих и холодных, больших и маленьких. Для классификации этих небесных объектов используются их абсолютные величины и спектральные характеристики. Спектр дает представление не только о температуре, но и о химическом составе небесного объекта.

В 1910 году ученые Эйнар Герцшпрунг и Генри Рассел, независимо друг от друга разработали диаграмму, значительно упрощающую классификацию звездных объектов и дающую четкое представление об этапах их развития. Кроме того, она наглядно демонстрирует взаимную зависимость спектрального класса, звездной величины и светимости.

Звезды расположены на данной диаграмме не хаотично, а образуют четко выраженные участки. 90% от их общего количества находятся в области, которую называют главной последовательностью. Кроме нее, на диаграмме существует область красных гигантов и сверхгигантов, в которой расположены светила, находящиеся на завершающем этапе своей эволюции.

Диаграмма Герцшпрунга — Рассела. Большинство звезд образуют главную последовательность

Данный феномен очень просто объяснить: большую часть жизни звезда получает энергию от реакций, протекающих в ее центральной области. Это протон-протонный цикл, а для массивных звезд — CNO-цикл. После прекращения термоядерных реакций формируется гелиевое ядро, и звезда становится красным гигантом.

Дальнейшая судьба светила зависит от его массы. Если она меньше десяти солнечных, то звезда превращается в красного гиганта, а затем в сверхгиганта, но если больше, то сразу в сверхгиганта. Существует и промежуточный этап – стадия субгиганта, во время которой горение гелия еще не началось, а слияние в ядре водорода уже не происходит.

На этом изображении диаграммы указаны области красных гигантов и сверхгигантов

Но и это еще не финал. Стадия красного гиганта относительно коротка: она занимает примерно десятую часть от общего времени существования светила.

Классы звёзд

В Галактике существуют семь классов звёзд:

Звёзды класса «O», голубого цвета, обладали самой высокой температурой. У них была самая короткая продолжительность жизни, меньше, чем 1 миллион лет. В Галактике было приблизительно 100 миллионов звёзд класса «O», планеты вокруг которых были пригодны для жизни. Пример: Гарниб.

  • Звёзды класса «B» бело-голубого цвета, также были очень горячими. Средняя продолжительность их жизни составляла примерно 10 миллионов лет. В Галактике также было приблизительно 100 миллионов звёзд класса «B», планеты вокруг которых были пригодны для жизни. Пример: Кесса.
  • Звёзды класса «A», белого цвета, были достаточно горячими. Они имели продолжительность жизни от 400 миллионов до 2 миллиардов лет. В Галактике также было приблизительно 100 миллионов звёзд класса «A», планеты вокруг которых были пригодны для жизни. Пример: Колу.
  • Звёзды класса «F», жёлто-белого цвета, имели среднюю температуру. Средняя продолжительность их жизни составляла примерно 4 миллиарда лет. В Галактике также было приблизительно 100 миллионов звёзд класса «F», планеты вокруг которых были пригодны для жизни. Пример: Ропаги.
  • Звёзды класса «G», жёлтого цвета, также имели среднюю температуру. Средняя продолжительность их жизни составляла примерно 10 миллиардов лет. В Галактике было приблизительно 2 миллиарда звёзд класса «G», планеты вокруг которых были пригодны для жизни. Пример: Корелл.
  • Звёзды класса «K», оранжевого цвета, имели достаточно низкую для звёзд температуру. Средняя продолжительность их жизни составляла примерно 60 миллиардов лет. В Галактике было приблизительно 3,75 миллиарда звёзд класса «K», планеты вокруг которых были пригодны для жизни. Пример: Явин.
  • Звёзды класса «M», красного цвета, были холодными по сравнению с остальными звёздами. Звёзды класса «M» также называли красными карликами. Средняя продолжительность их жизни составляла примерно 100 триллионов лет. В Галактике было приблизительно 700 миллионов звёзд класса «M», планеты вокруг которых были пригодны для жизни. Пример: Бараб.

Размер звезды также зависел от её класса. Самыми крупными были голубые горячие звёзды класса «O». Чем ниже была температура звезды, тем меньше по размеру была она сама. Соответственно, самыми маленькими были красные звёзды класса «M». Кроме того, приблизительно 10 процентов всех звёзд Галактики не подпадали под эту градацию, причём вокруг 500 миллионов из них вращались планеты, пригодные для жизни.

Интересные факты о голубых сверхгигантах

Голубые гигантские космические тела отличаются относительно молодым возрастом, а также у них высокая температура поверхности, равная от 20 до 50000 градусов Цельсия. Масса таких объектов космоса больше Солнца в 10 – 15 раз, максимальный радиус в среднем равен 25 Солнцам.

Синий гигант – редчайший объект, таящий в себе много загадок. Это наиболее яркие и горячие космические тела, которые из-за крупной массы живут лишь 10 – 50 миллионов лет. Находятся они только в молодых космических структурах, преимущественно в:

  • рассеянных скоплениях;
  • галактических рукавах;
  • неправильных галактиках.

Если рассматривать физическое появление данного феномена, то можно заметить, что температура поверхности обеспечивается за счёт скорости передвижения молекул, которые относятся к веществу тела. Чем выше данный показатель, тем скорее становится движение. Это существенно влияет на длину волн, которые проходят через вещество. В горячей среде они становятся короткими, а в холодной – более длинными.

В связи с тем, что между цветом и температурой сверхгиганта существует определённая взаимосвязь, то была создана специальная диаграмма Герцшпрунга-Рассела, выявляющая такие ценные параметры:

  • массу;
  • уровень свечения;
  • возрастные особенности.

По мере своего развития светило может менять цвет, становясь желтым или белым, подобно Полярной звезде. Но, традиционно факт существования такого тела завершается взрывом.

Голубые сверхгиганты

Ригель

В отличие от красных, доживающих долгую жизнь гигантов, – это молодые и раскаленные звезды, превосходящие своей массой солнечную в 10-50 раз, а радиусом – в 20-25 раз. Их температура впечатляет – она составляет 20-50 тыс. градусов. Поверхность голубых сверхгигантов стремительно уменьшается из-за сжатия, при этом излучение внутренней энергии непрерывно растет и повышает температуру светила. Результатом такого процесса становится превращение красных сверхгигантов в голубые. Астрономы заметили, что звезды в своем развитии проходят различные стадии, на промежуточных этапах они становятся желтыми или белыми. Ярчайшая звезда созвездия Ориона – Ригель – отличный пример голубого сверхгиганта. Ее внушительная масса в 20 раз превышает Солнце, светимость выше в 130 тыс. раз.

Денеб

В созвездии Лебедя наблюдается звезда Денеб – еще один представитель этого редкого класса. Ее спектральный класс Ia, это – яркий сверхгигант. На небосводе по своей светимости эта далекая звезда может сравниться только с Ригелем. Интенсивность ее излучения сравнима с 196 тыс. Солнц, радиус объекта превосходит наше светило в 200 раз, а вес – в 19. Денеб быстро теряет свою массу, звездный ветер невероятной силы разносит ее вещество по Вселенной. Звезда уже вступила в период нестабильности. Пока ее блеск изменяется по небольшой амплитуде, но со временем станет пульсирующим. После исчерпания запаса тяжелых элементов, которые поддерживают стабильность ядра, Денеб, как другие голубые сверхгиганты, вспыхнет сверхновой, а его массивное ядро станет черной дырой.

Бывают ли «молодые» гиганты?

Некоторые небесные объекты достигают поздних спектральных классов ещё до начала завершения своей жизни. Бывают случаи, когда процесс преобразования в красного гиганта начинается в самом начале звездообразования. У таких светил излучение осуществляется благодаря гравитации, образующейся из-за сжатия объекта. Длительность трансформации напрямую зависит от массы и габаритов звезды и продолжаются от ~ 103 лет до ~ 108 лет.

Благодаря сжатию повышается температура звёзд и уменьшается их размер. Это приводит к снижению светимости. В результате в центре светила начинаются термоядерные реакции, после чего они попадают в главную последовательность. Несмотря на то что «молодые» и «старые» гиганты очень похожи друг на друга, астрономы называют красными гигантами только те объекты, которые дошли до поздних этапов эволюции. Молодые светила, находящихся в начальной стадии своего формирования, называют протозвёздами.

Строение звезды главной последовательности солнечного типа и красного гиганта с изотермическим гелиевым ядром и слоевой зоной нуклеосинтеза (масштаб не соблюдён)

Литература

Тактико-технические характеристики[ | код]

Технические характеристики

MV-22 Osprey

MV-22 Osprey

MV-22 Osprey — ночная дозаправка

  • Экипаж — 3 (MV-22) или 4 (CV-22) человека;
  • пассажировместимость — 24 десантника.
  • Габариты:
    • длина фюзеляжа — 17,48 м;
    • размах крыла по концам лопастей винтов — 25,78 м;
    • длина при сложенных лопастях — 19,23 м;
    • ширина при сложенных лопастях — 5,64 м;
    • высота по килям — 5,38 м;

      • при двигателях, установленных вертикально вверх — 6,74 м;
      • при сложенных лопастях — 5,51 м;
    • площадь крыла — 28 м².
  • Масса:
    • масса пустого конвертоплана — 15 000 кг;
    • снаряжённого — 21 500 кг;
    • максимальная взлётная масса — 27 443 кг;
      • при вертикальном взлёте — 23 859 кг;
      • при взлёте с коротким разбегом — 25 855 кг;
    • масса полезной нагрузки — 5445 кг (при вертикальном взлёте);
    • масса груза на внешней подвеске:
      • при использовании одного крюка — 4536 кг;
      • при использовании двух крюков — 6147 кг.
  • Объём топливных баков:
    • MV-22 — 6513 л;
    • CV-22 — 7710 л;
    • до трёх подвесных топливных баков по 1628 л.
  • Грузовая кабина:
    • длина — 6,34 м;
    • ширина — 1,74 м;
    • высота — 1,67 м.
  • Двигатели — 2 × Rolls-Royce T406 (AE 1107C-Liberty):

    • мощность — 2 × 4586 кВт (6150 л. с.);
    • количество лопастей ротора — 3 шт.;
    • диаметр ротора — 11,6 м;
    • площадь ометаемой поверхности — 212 м².
Лётные характеристики (MV-22)
  • Максимальная скорость:
    • в самолётном режиме — 565 км/ч;
    • в вертолётном режиме — 185 км/ч.
  • Крейсерская скорость — 510 км/ч.
  • Дальность действия:
    • боевой радиус — 690 км;
    • радиус действия при десантной загрузке — 722 км;
    • практическая дальность — 2627 км (без дозаправки);

      • при вертикальном взлёте — 2225 км;
      • при взлёте с коротким разбегом — 3340 км;
    • перегоночная дальность — 3892 км (с дозаправкой).
  • Практический потолок

    с одним двигателем — 3139 м.

    — 7620 м;

  • Скороподъёмность:

    • номинальная — 5,5 м/с;
    • максимальная — 16,25 м/с.
  • Нагрузка на роторы — 102,23 кг/м².
  • Энерговооружённость — 427 Вт/кг.
  • Максимальная эксплуатационная перегрузка — +4/−1 g.

Технические характеристики

Хронология появления холодного оружияХронология появления холодного оружия

A-10A Thunderbolt II

Примечания

Как ухаживать за молодыми растениями

В первые недели после высадки растение нуждается в особом уходе. Грубые ошибки могут погубить его или, как минимум, замедлить развитие.

Например, оно должно получать достаточно солнечного света, но от прямых лучей, особенно в жаркие дни, растение лучше затенять. Увядшие листья, как и отцветшие цветы, аккуратно удаляются. Полив следует производить 1-2 раза в неделю. Это зависит от температуры и влажности в помещении. Герань не слишком любит влагу, и корневая система может загнить.

В холодное время года желательно выставить цветы на подоконник, поближе к стеклу (главное чтобы листья и стебель не касались холодной поверхности). Это имитирует сезонное похолодание.

Наконец, если вы хотите, чтобы растение было пышным, аккуратно прищипните часть верхних почек.

Прародители сверхновых

Считается, что большинство предшественников сверхновых типа II являются красными сверхгигантами, в то время как менее распространенные сверхновые типа Ib / c создаются более горячими звездами Вольфа – Райе, которые полностью потеряли большую часть своей водородной атмосферы. Почти по определению сверхгигантам суждено закончить свою жизнь насильственной смертью. Звезды, достаточно большие, чтобы начать сплавление элементов тяжелее гелия, похоже, не имеют никакого способа потерять достаточно массы, чтобы избежать катастрофического коллапса ядра, хотя некоторые из них могут коллапсировать, почти бесследно, в свои собственные центральные черные дыры.

Однако простые «луковичные» модели, показывающие, что красные сверхгиганты неизбежно превращаются в железное ядро, а затем взрываются, оказались слишком упрощенными. Прародителем необычной сверхновой типа II 1987A был синий сверхгигант, который , как считается, уже прошел через фазу жизни красного сверхгиганта, и теперь известно, что это далеко не исключительная ситуация. Сейчас много исследований сосредоточено на том, как голубые сверхгиганты могут взорваться как сверхновые и когда красные сверхгиганты могут выжить, чтобы снова стать более горячими сверхгигантами.

Кинжал «басселард»

Сверхновые

Сверхновая – это звезда, которая вследствие своего сжатия, на определённом этапе своей эволюции, взрывается. Такой взрыв, для постороннего наблюдателя, будет выглядеть как спонтанное, очень сильное увеличение яркости такого светила. И наблюдать такой эффект можно на очень больших расстояниях.

Увеличение светимости в сверхновых может продлиться до десятка суток. Зарегистрированы такие случаи, когда сверхновую звезду можно было видеть днём, невооружённым взглядом.

Отличаются сверхновые звёзды от новых силой происходящего взрыва.

Сверхновые звёзды могут отличаться друг от друга, наличием линий водорода, в спектре такой вспышки. Если водород отсутствует, то звезда I типа, а если есть, то сверхновая II типа.

Наблюдаемые характеристики

Эволюционные треки звёзд различных масс при образовании красных гигантов на диаграмме Герцшпрунга — Рассела

К красным гигантам относят звёзды спектральных классов K и M класса светимости III, то есть с абсолютной звёздной величиной m≥MV≥−3m{\displaystyle 0^{m}\geq M_{V}\geq -3^{m}}. Температура излучающей поверхности (фотосферы) красных гигантов сравнительно невелика (Tph ≈ 3000—5000 K) и, соответственно, поток энергии с единицы излучающей площади невелик — в 2—10 раз меньше, чем у Солнца. Однако полная светимость таких звёзд может достигать 105—106L, так как красные гиганты и сверхгиганты имеют очень большие размеры и, соответственно, площади поверхности. Характерный радиус красных гигантов — от 100 до 800 солнечных радиусов, что соответствует площади поверхности в 104—106 раз больше солнечной. Так как температура фотосферы красного гиганта близка к температуре спирали лампы накаливания (≈3000 К), красные гиганты, вопреки своему названию, аналогично лампам, испускают свет не красного, а скорее охристо-желтоватого оттенка.

Спектры красных гигантов характеризуются наличием молекулярных полос поглощения, поскольку в их относительно холодной фотосфере некоторые молекулы оказываются устойчивыми. Максимум излучения приходится на красную и инфракрасную области спектра.

ТТХ берегового ракетного комплекса «Бастион»

Береговой ракетный комплекс «Бастион» отличается следующими техническими характеристиками:

  • предельным количеством ракет в боекомплекте — 24;
  • минимальным временным промежутком между выстрелами — 2,5 с;
  • временем возврата в боеготовное состояние из транспортного — до 5 минут;
  • периодом автономности — в течение суток;
  • продолжительностью автономности при поддержке машиной обеспечения — до 30-ти суток;
  • защищаемой длиной береговой линии — до 600 км;
  • предельным удалением от побережья — до 200 км;
  • продолжительностью эксплуатации — 10 лет;
  • скоростью транспортировки — до 80 км/ч;
  • предельной дальностью марша — до 1000 км.

Продолжительность автономности установки зависит от наличного запаса топлива. При использовании передвижной дозаправки, время боевого дежурства системы существенно возрастает.

Подвижная пусковая установка, снаряженная двумя ракетными контейнерами, включая заправленные топливные баки и экипаж, весит сорок одну тонну.

Экипаж системы ПРК «Бастион» включает командира установки, пускового оператора и водителя. Перед запуском контейнеры приводятся в вертикальное положение. Залповая стрельба с одной установки предполагает максимальную продолжительность интервала от двух до пяти секунд.

Характеристики приведены для подвижного варианта системы «Бастион». Параметры стационарного исполнения аналогичны, за исключением отсутствия времени на развертывание в состояние боеготовности, поскольку данная техника, находящаяся на дежурстве может быть задействована в любой момент.

На многочисленных фото и видео в интернете представлены комплексы «Бастион» во время проведения парадов и в процессе ведения огня.

Популярные формы ножей: влияние на рез

Усовершенствованные танки

В середине девяностых годов все модели танков, которые прошли усовершенствование, получили название «Леопард-2А5». По состоянию на 2015 год их насчитывалось менее пятисот единиц. Танки, не прошедшие модернизацию, начали продавать в государствах третьего мира.

В начале двухтысячных прошли усовершенствование еще более двухсот танков. Эти «Леопарды-2А6» оказались самыми продвинутыми с точки зрения технического оснащения. Новейшие на тот период модификации начали оборудоваться усиленной башенной броней и дополнительной противоминной защитой.

Обновленные «Леопарды» получили также новое орудие с более длинным стволом. Это заметно повысило огневую мощь боевой машины и существенно расширило перечень применяемых боеприпасов. Значительно усовершенствовали и бортовую электронику с новой информационной системой управления.

Другие объекты

Как известно, светящиеся звезды на ночном небе образуют целые созвездия и группы. Например, группа из семи светил, которая располагается в созвездии Большая Медведица, образует известный астеризм Большой Ковш.Безусловно, в отдельном созвездии какой-то объект обладает наибольшими значениями по тем или иным параметрам. Взять для примера созвездие Ориона, где самая большая и объемная это звезда Бетельгейзе.Также в любой системе существует отличающееся своей величиной тело. Так, самая большая известная звезда Солнечной системы, разумеется, Солнце. Впрочем, оно же является единственным и центральным относительно нашей системы.

Созвездие Орион

Красные гиганты — переменные звёзды[ | ]

Фотография Миры в ультрафиолете. «Хвост» звёздной атмосферы обусловлен влиянием звезды-компаньона

  • Мириды (радиально пульсирующие долгопериодические переменные типа Ми́ры — Омикрона Кита) — гиганты спектрального класса М с периодом от 80 до более 1000 дней и вариациями блеска от 2,5m до 11m, в спектрах присутствуют эмиссионные линии.
  • SR — полуправильные пульсирующие переменные гиганты спектрального класса М с периодом от 20 дней до нескольких лет и вариациями блеска ~ 3m (пример: Z Большой Медведицы (нем.)русск.).
  • SRc — полуправильные пульсирующие переменные сверхгиганты спектрального класса М (примеры: μ Цефея, Бетельгейзе, α Геркулеса).
  • Lb — неправильные медленные пульсирующие переменные гиганты спектрального класса K, M, C, S (примеры: CO Cyg).
  • Lc — неправильные медленные пульсирующие переменные сверхгиганты спектрального класса M с вариациями блеска ~ 1m (примеры: TZ Cas).
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector