Энергия термоядерного синтеза
Содержание:
- Содержание
- Содержание
- Почему до сих пор не получилось
- Состав кораблей — участников парадов в честь Дня ВМФ опубликован на сайте Минобороны
- Безопасна ли реакция термоядерного синтеза
- Как работает токамак
- Атомная эра
- Мюонный катализ
- Литература
- Риски ИТЭР
- H-bomb
- Как легально не пойти в армию
- Море зеленой энергии
- Тральщик «Александр Обухов» обезвредил немецкие мины у острова Гогланд
- Варианты
- Примечания
- Термоядерные реакции
- Диагностика сердца ИТЭР
- Основное вооружение танка
- Патроны
- Texничecкиe xapaктepиcтики
- Мюонный катализ
- Термоядерный реактор p+p[править]
- Происшествия с термоядерными боеприпасами
- Чистое термоядерное оружие
- Токамак
- Модификации ГАЗ 2705
Содержание
Содержание
Почему до сих пор не получилось
Существует так называемый критерий Лоусона, позволяющий оценить, возможен ли синтез в определенном реакторе с использованием того или иного топлива. Чтобы запустить реакцию, необходимо обеспечить оптимальную плотность плазмы, разогреть ее до достаточно высоких температур, максимально уменьшив при этом потери энергии. Например, в дейтерий-тритиевой плазме при температуре в 110 млн градусов, произведение числа частиц в кубическом сантиметре на время их удержания (в секундах) должно быть не менее 1014.
Схема устройства токамака
Однако плазма – весьма беспокойная субстанция. Она не любит, когда ее удерживают, и постоянно стремится выйти из-под контроля. С этой проблемой физики столкнулись еще в 60-е годы. Чтобы хотя бы частично решить ее, потребовалось значительно усложнить конструкцию реактора.
Второй серьезной проблемой является потеря энергии. Плазма, как и любое другое нагретое тело, начинает излучать в электромагнитном диапазоне, стремительно при этом остывая. Чтобы поддерживать температуру на довольно высоком уровне, приходится постоянно вкачивать огромное количество энергии.
Кроме глобальных физических, перед инженерами встало множество чисто прикладных вопросов. В результате идея управляемого синтеза, которая в моделях выглядела многообещающе, оказалась очень сложной для реализации. Например, в серьезную проблему превратилась обычная пыль. Она проникает в вакуумные камеры реакторов и поглощает заметную часть ядерного топлива.
Состояние системы, при котором в ходе реакции синтеза выделяется столько же энергии, сколько затрачено на ее запуск и поддержку, обозначается литерой Q. Для самоподдерживающей реакции без внешнего подогрева коэффициент должен быть равен 5, и этот показатель до сих пор не достигнут. Для получения стабильной плазмы, пригодной для коммерческих установок, нужны гораздо большие значения. Например, на ITER планируют достигнуть Q ~ 30.
Справедливости ради следует отметить, что огромные средства, выделяемые физикам на протяжении десятилетий, потрачены не впустую. Параметры современных реакторов всего лишь в несколько раз хуже необходимых для достижения устойчивой термоядерной реакции. Несколько десятилетий назад отставание было на порядки.
Состав кораблей — участников парадов в честь Дня ВМФ опубликован на сайте Минобороны
Безопасна ли реакция термоядерного синтеза
Главным преимуществом реакции термоядерного синтеза, проходящей внутри токамака, является ее безопасность. Можно удивиться, как такое возможно при достижении таких высоких температур, но это действительно так.
Все из-за того, что плотность плазмы в миллион раз меньше плотности атмосферы. Благодаря такой особенности работы, взрыв из-за внутреннего давления просто невозможен. Да и если температура начнет падать, плазма просто будет, как говорят физики, ”осыпаться”. Плюс, топливо подается в течение всей реакции и для ее остановки достаточно просто прекратить его подачу. Например, атомную станцию просто выключить нельзя и я уже рассказывал, почему.
Единственной опасностью является только то, что изотоп трития обладает небольшой радиоактивностью. Впрочем, она не такая высокая, чтобы переживать по этому поводу. Она существенно ниже, чем у топлива для атомной станции. Например, период полураспада уранового топлива составляет почти 5 миллиардов лет (то есть почти никогда), а трития — всего 12 лет. Да и используется его минимальное количество.
А еще можно добавить, что технологию реакции термоядерного синтеза нельзя применить в военных целях. Создание плазмы вне токамака пока невозможно, а использование его самого в качестве оружия слабо осуществимо из-за того, что он не взрывается.
Как работает токамак
Для создания внутри токамака магнитного поля, он составляется из секций, внутри которых намотаны катушки. Так как они идут по всей длине камеры и создают что-то вроде замкнутого тоннеля, получающееся магнитное поле называют тороидальным. Это и есть рабочая зона установки.
Конструкци токамака.
Перед началом работы из камеры токамака откачивают воздух, а вместо этого заполняют его смесью дейтерия и трития. Они и являются основой реакции термоядерного синтеза.
Преимущество использования этих двух элементов в том, что они очень дешевые. Дейтерий очень легко получается из воды, которой на нашей планете более чем достаточно, а тритий синтезируется пусть и чуть более сложным способом, но это тоже не является большой проблемой.
Когда камера заполнена, в ней создается вихревое электрическое поле, которое поддерживают плазму внутри камеры, а заодно разогревает ее, доводя до той самой температуры в несколько миллионов градусов.
Сейчас тут работают люди, а скоро будет 150 миллионов градусов.
Так как поле и нагрев создаются за счет увеличения тока в индукторе, а он не может увеличиваться бесконечно, время существования плазмы в стабильном состоянии пока не превышает нескольких секунд. Это и является главной причиной того, что мы пока не можем использовать токамаки в качестве источника промышленного получения энергии. Существую способы решения этой проблемы, в том числе с использованием микроволнового излучения, но пока работы в этом направлении еще ведутся.
Впрочем, микроволновое излучение и так применяется внутри токамака, так как только электромагнитного поля недостаточно для нагрева плазмы до температуры, необходимой для осуществления термоядерной реакции.
Обычная физика частиц четко говорит нам, что ядра с одинаковым зарядом отталкиваются друг от друга. Но при достижении сверхвысоких температур, они начинают вести себя иначе, образуя ядро гелия плюс один свободный нейтрон. Именно в этот момент и высвобождается огромное количество энергии. В обычных условиях она тратится на взаимодействие атомов между собой.
Атомная эра
По использованию в качестве источника энергии урана в мире существует резкая дифференциация. Всего сейчас работает 191 ядерная электростанция с 451 ядерным реактором (еще 60 реакторов находятся в стадии строительства). Из этого числа 100 реакторов построены в США и дают этой стране 20% электроэнергии. В России 36 реакторов дают почти пятую часть электроэнергии. Есть страны, в которых ядерная энергия — это треть энергии в ее общем балансе (Южная Корея, Финляндия). Имеются страны, где эта доля — почти половина всей энергии (Словакия, Украина). А вот в Китае и Индии доля ядерной энергии в общем балансе меньше 5%. Совсем не используется ядерная энергия в Австралии, в большинстве стран Южной и Центральной Америки и в многочисленных мелких государствах Океании. Опережает все страны по этому показателю Франция, в которой 58 ее ядерных реакторов производят 77% всей вырабатываемой в стране электроэнергии. Неслучайно статья в Википедии об экономике Франции начинается словами: «Франция — высокоразвитая страна, ядерная и космическая держава».
Отчасти это объясняется тем обстоятельством, что во Франции еще в 30-е годы прошлого века начали развиваться работы по ядерной физике. Ирен и Фредерик Жолио-Кюри (как и Энрико Ферми в Италии) стали нобелевскими лауреатами за получение новых изотопов («меченых атомов»). Но они не поняли, что в их опытах наблюдалась также реакция деления урана. Об этом догадались немецкие радиохимики и физики О. Ган, Ф. Штрассманн, Л. Мейтнер. Началась атомная эра. Энрико Ферми продолжал работы с ураном уже в США. Он изобрел и построил ядерный реактор, где в ноябре 1942 года впервые в мире была осуществлена цепная ядерная реакция деления урана. Но целью создания первых реакторов было не выработка электроэнергии, а получение плутония, искусственного трансуранового элемента, способного, как и уран, к взрывному осуществлению реакции деления.
После окончания войны и ужасных августовских событий 1945 года в Хиросиме и Нагасаки интересы многих физиков-ядерщиков сосредоточились на мирном использовании энергии деления. Их вдохновлял и запуск в 1954 году первой в мире ядерной электростанции в СССР. В реакторостроении Франция вскоре стала мировым лидером. Возможно, в этом немалую роль сыграли и почти полное отсутствие во Франции секретности ядерных исследований, и большой интерес к этим исследованиям французского правительства. На юге Франции, в маленьком городке Кадараш в 60 километрах от Марселя был создан мощный научный центр ядерной физики.
И именно там, неподалеку от Кадараша, в 2006 году было намечено построить ИТЭР — международный термоядерный экспериментальный реактор. Огромную строительную площадку размером с 400 футбольных полей было решено создать в лесном массиве, поскольку вся безлесная сельскохозяйственная округа была арендована частными владельцами. Первое дерево было срублено 29 января 2007 года. Но перед этим несколько лет уточнялись научные предпосылки строительства реактора и почти пять лет разрабатывался технический проект сооружения. Много времени ушло и на организацию финансирования проекта и создание управляющих органов. Первоначально планировалось запустить реактор в 2022 году и затратить 5 миллиардов долларов. Но в 2012 году проект был пересмотрен, сроком окончания строительства был намечен 2025 год, а предполагаемая сумма затрат возросла до 20 миллиардов долларов. Сейчас пройдена половина дистанции, и панорама строительства поражает воображение.
Кто же затеял и осуществил проект этой грандиозной стройки, поистине «стройки ХХI века»? Как возникла система финансирования и изготовления многочисленных узлов и агрегатов будущего реактора?
Мюонный катализ
Термоядерная реакция может быть существенно облегчена при введении в реакционную плазму отрицательно заряженных мюонов.
Мюоны µ−, вступая во взаимодействие с термоядерным топливом, образуют мезомолекулы, в которых расстояние между ядрами атомов топлива несколько меньше, что облегчает их сближение и, кроме того, повышает вероятность туннелирования ядер через кулоновский барьер.
Число реакций синтеза Xc, инициируемое одним мюоном, ограничено величиной коэффициента прилипания мюона. Экспериментально удалось получить значения Xc ~100, т. е. один мюон способен высвободить энергию ~ 100 × Х МэВ, где Х — энергетический выход катализируемой реакции.
Пока величина освобождаемой энергии меньше, чем энергетические затраты на производство самого мюона (5-10 ГэВ). Таким образом, мюонный катализ пока энергетически невыгодный процесс. Коммерчески выгодное производство энергии с использованием мюонного катализа возможно при Xc ~ 104.
Литература
Риски ИТЭР
В настоящее время ИТЭР находится на полпути к своей первоначальной цели циркуляции плазмы.
Разработчики постоянно работают над прогнозированием и смягчением рисков, которые могут привести к дополнительным задержкам или затратам.
Конечной целью, конечно, является не просто циркулирующая плазма, но и плавление дейтерия и трития для создания “горящей” плазмы, которая генерирует значительно больше энергии, чем поступает в нее. Токамак ИТЭР должен генерировать 500 мегаватт электроэнергии, в то время как коммерческие термоядерные установки будут размещать более крупные реакторы, чтобы генерировать от 10 до 15 раз больше энергии. Согласно планам, 2000-мегаваттный термоядерный завод поставит 2 миллиона домов электричеством..
Если проект окажется успешным, ученые ИТЭР предсказывают, что термоядерные электростанции могут начать выходить в эксплуатацию уже к 2040 году по производству 2 гигаватт и более. Капитальные затраты на строительство АЭС должны быть аналогичны капитальным затратам нынешних АЭС ― около 5 миллиардов долларов за гигаватт. В то же время термоядерные электростанции просто используют дейтерий и тритий, и поэтому избегают “затрат на добычу и обогащение урана, или затрат на уход за радиоактивными отходами и их утилизацию.
Строительство атомной станции синтеза стоит больше, чем строительство станции ископаемого топлива. Цены на ископаемое топливо очень высоки, а расходы на топливо для синтеза незначительны, так что в течение срока службы электростанции расходы будут незначительны.
В то же время ископаемое топливо обходится дорого не только из-за финансовых значений. Огромные затраты на ископаемое топливо связаны с воздействием на окружающую среду, будь то из-за добычи полезных ископаемых, загрязнения окружающей среды или выброса парниковых газов. Синтез углерода – бесплатен.
H-bomb
А вот горючее для термоядерного синтеза критической массы не имеет. Вот Солнце, наполненное термоядерным топливом, висит над головой, внутри его уже миллиарды лет идет термоядерная реакция, — и ничего, не взрывается. К тому же при реакции синтеза, например, дейтерия и трития (тяжелого и сверхтяжелого изотопа водорода) энергии выделяется в 4,2 раза больше, чем при сгорании такой же массы урана-235.
Изготовление атомной бомбы было скорее экспериментальным, чем теоретическим процессом. Создание же водородной бомбы потребовало появления совершенно новых физических дисциплин: физики высокотемпературной плазмы и сверхвысоких давлений. Прежде чем начинать конструировать бомбу, надо было досконально разобраться в природе явлений, происходящих только в ядре звезд. Никакие эксперименты тут помочь не могли — инструментами исследователей были только теоретическая физика и высшая математика. Не случайно гигантская роль в разработке термоядерного оружия принадлежит именно математикам: Уламу, Тихонову, Самарскому и т. д.
Как легально не пойти в армию
Море зеленой энергии
— Инициатором этой работы выступил академик Евгений Велихов еще в разгар перестройки в СССР, — вспоминает ученый. — Тогда же Михаилу Горбачеву удалось договориться с Рональдом Рейганом о совместном создании термоядерного реактора. Соединенные Штаты Америки в консультациях с Японией и Европейским сообществом выдвинули предложение относительно того, каким образом осуществлять такую деятельность. Уже в 1988 году началась фаза концептуального проектирования, затем был создан технический проект.
К участникам проекта присоединились Китай, Корея и Индия. Местом строительства выбрали юг Франции, неподалеку от Марселя, где находятся французский ядерный центр Кадараш и Комиссариат по альтернативным видам энергетики CEA. Кроме большого опыта в области создания оборудования для ядерной энергетики для строительства ИТЭР нужен был участок, доступный для крупного судоходства, поскольку масса деталей реактора составляет сотни тонн и превышает допустимые пределы возможностей наземных видов грузового транспорта.
Первый прообраз термоядерного реактора — ТОКАМАК (тороидальная камера с магнитными катушками) — был изобретен и построен в СССР в 1954 году. Она представляет собой обмотанную магнитными катушками вакуумную камеру, внутри которой находится плазма, нагретая до десятков миллионов градусов. С того момента как в СССР появился первый работающий ТОКАМАК, в мире начался настоящий бум в области физики плазмы. Все поняли, что создание настоящего термоядерного реактора позволило бы отказаться от всех остальных видов энергии, прекратить сжигание топлива и выбросы в атмосферу двуокиси углерода и целого списка других вредных веществ. Непрерывно горящая плазма, процесс горения которой однажды вышел бы в режим самоподдержания — а именно это и должно произойти в ИТЭР, правда, на короткие промежутки времени, — это была бы победа над ресурсоемким производством энергии, над добывающей промышленностью, выкачивающей из недр все мыслимые и немыслимые ресурсы — уголь, нефть, газ. Никаких ресурсов, ноль выбросов и целое море энергии.
Тральщик «Александр Обухов» обезвредил немецкие мины у острова Гогланд
Варианты
- АКС74УН2 («ночной») — вариант, отличающийся наличием планки для крепления ночного прицела. Для стрельбы в условиях естественной освещенности ночью к нему присоединяется ночной стрелковый прицел универсальный модернизированный (НСПУМ).
- АКС74УБ («бесшумный») — вариант для сил специального назначения, отличающийся заменой штатной дульной насадки на резьбу для крепления глушителя (обычно ПБС-4) и возможностью установки бесшумного подствольного гранатомета БС-1М. В таком виде автомат образовывает бесшумный стрелково-гранатометный комплекс 6С1 «Канарейка».
В поздних версиях АКС74У на левой стороне ствольной коробки появилась боковая планка системы «ласточкин хвост» для крепления прицелов типа «Кобра» и ПСО/ПОСП.
Примечания
- Комментарии
- Первые советские ядерные испытания получали кодовые наименования от американского прозвища Иосифа (Джозефа) Сталина «Дядя Джо».
- Источники
- Лоуренс У. Л. Люди и атомы. — М.: Атомиздат, 1967, с. 207.
- ↑ В случае оставления в «царь-бомбе» уранового слоя, она, конечно, взорвалась бы на 100 мегатонн вместо 50, однако это вызвало бы катастрофически сильное загрязнение полигона радиоактивными продуктами реакции урана[значимость факта?]
- Её боевое значение вообще было довольно спорно из-за слишком большого веса — для испытаний специально переделывали несколько тяжёлых бомбардировщиков
- , p. 157.
Термоядерные реакции
Диагностика сердца ИТЭР
Россия строит чуть менее 10% реактора ИТЭР. Каждый день участники по несколько часов ведут обсуждение деталей проекта на онлайн-конференциях по темам, касающимся конкретных групп ученых и определенных стран. Автору этого текста пришлось покинуть кабинет как раз с началом такого онлайн-совещания, так и не успев задать эксперту всех вопросов. Зато интервью завершилось неожиданной экскурсией в чистый зал, где новосибирские физики уже сконструировали помещение для создания порт-плагов — бункеров размером с танк Т-60 и начиненных тысячами датчиков для измерения всех необходимых параметров горения плазмы. Это десятки тысяч видов различных измерений. Чаще всего это томографические измерения для постоянной фиксации и выявления различных характеристик плазмы. Через отдельные порты будет происходить собственно нагрев плазмы. Таких «танков» на реакторе 28, каждый — для решения своих задач. Все они будут закреплены непосредственно на вакуумной камере, поэтому их вес не должен превышать 50 тонн.
Четыре порт-плага (три верхних и один более крупный — экваториальный) создает Институт ядерной физики им. Г. И. Будкера СО РАН. В каждом порт-плаге своими измерениями займутся разные группы ученых из нескольких стран. В порт-плагах, сделанных в Новосибирске, предстоит работать научным группам из России, Европы, Индии, Кореи и США. Задача сибиряков — интегрировать абсолютно разные технологии измерения в единый комплекс, при этом не превысив параметры порт-плагов ни по массе, ни по занимаемой площади внутри бункера. Ученые из ФТИ имени Иоффе планируют регистрировать в плазме атомы перезарядки, ученые из Кореи — измерять уровень ультрафиолетового излучения, а американские специалисты собираются проводить СВЧ-диагностику плазмы.
Организации из перечисленных стран-участниц займутся сборкой порт-плага непосредственно в ИЯФ СО РАН. Для сборки таких объектов нужны, с одной стороны, огромная грузоподъемность кранов для перемещения и различных манипуляций с многотонными комплектующими, с другой — необходимо чистое помещение, чтобы на прецизионно точное оборудование не попала пыль. Зал с такими уникальными характеристиками, вероятно, будет похож на гигантскую операционную. Такое сравнение выглядит особенно уместно, если иметь в виду, что вакуумная камера с порт-плагами — это сердце ИТЭР, а постоянные измерения — это диагностика, необходимая для его жизни.
С этой целью в ИЯФ создали огромный зал и оснастили его подвесным краном и промышленными системами фильтрации поступающего воздуха. При открывании люка для загрузки оборудования с улицы из помещения наружу поступает сильный встречный поток воздуха, который не допускает попадания пыли внутрь зала. Первые испытания пройдут на макетах. Начало сборки запланировано на 2022–2023 годы.
Основное вооружение танка
Эти модули чрезвычайно эффективны в городских условиях, в которых обычные советские танки традиционно несут большие потери от противотанкового оружия. Кроме того, они чрезвычайно эффективны в деле противодействия легкой бронетехнике врага, позволяя попусту не расходовать основной боеприпас.
В общем и целом, работа действительно была проведена впечатляющая. Но это – еще не «Булат». Танк, который носит это имя, является дальнейшим развитием и переработкой описанной только что модификации старой машины. Итак, мы наконец-то приступим к описанию непосредственного «героя» нашей статьи.
Патроны
Texничecкиe xapaктepиcтики
Мюонный катализ
Основная статья: Мюонный катализ
Термоядерная реакция может быть существенно облегчена при введении в реакционную плазму отрицательно заряженных мюонов.
Мюоны µ−, вступая во взаимодействие с термоядерным топливом, образуют мезомолекулы, в которых расстояние между ядрами атомов топлива несколько меньше, что облегчает их сближение и, кроме того, повышает вероятность туннелирования ядер через кулоновский барьер.
Число реакций синтеза Xc, инициируемое одним мюоном, ограничено величиной коэффициента прилипания мюона. Экспериментально удалось получить значения Xc ~100, т. е. один мюон способен высвободить энергию ~ 100 × Х МэВ, где Х — энергетический выход катализируемой реакции.
Пока величина освобождаемой энергии меньше, чем энергетические затраты на производство самого мюона (5-10 ГэВ). Таким образом, мюонный катализ пока энергетически невыгодный процесс. Коммерчески выгодное производство энергии с использованием мюонного катализа возможно при Xc ~ 104.
Термоядерный реактор p+p[править]
Простейшая, древнейшая и тупейшая реакция термоядерного синтеза — это протон-протонная реакция. Существует в древнейших звёздах, из-за чего они горят очень ярко и очень недолго (по космическим меркам). В ходе реакции протоны, представляющие собой ядра атомов водорода, сливаются в атом гелия и выделяют много энергии. Минусом процесса является водород — его нужно ну очень много (потому что реакция идет через слабое взаимодействие, и эта фигня неслабо так охлаждается потоком нейтрино, что в принципе, хорошо — нейтрино с материей почти не взаимодействуют, а с другой стороны плохо — предотвратить охлаждение ниже точки начала реакции мы не можем), так что в домашних условиях повторить эксперимент не удастся вообще никак.
Происшествия с термоядерными боеприпасами
США, 1958
Основная статья: Столкновение над островом Тайби
Столкновение бомбардировщика B-47 и истребителя F-86 над островом Тайби 5 февраля 1958 года — авиационное происшествие над побережьем американского штата Джорджия, в результате которого истребитель был потерян, а экипажу бомбардировщика пришлось аварийно сбросить в океан водородную бомбу Mark 15.
Бомба до сих пор не найдена; считается, что она покоится на дне залива Уоссо (англ. Wassaw Sound) к югу от курортного города Тайби-Айленд.
Гренландия, 1968
Основная статья: Авиакатастрофа над базой Туле
21 января 1968 года вылетевший с аэродрома в Платтсбурге (штат Нью-Йорк) самолёт B-52 в 21:40 по среднеевропейскому времени врезался в ледяной панцирь залива Северная Звезда (Гренландия) в пятнадцати километрах от авиабазы ВВС США Туле. На борту самолёта находились 4 термоядерные авиабомбы.
Пожар способствовал детонации вспомогательных зарядов во всех четырёх атомных бомбах, находящихся на вооружении бомбардировщика, но не привёл к взрыву непосредственно ядерных устройств, поскольку они не были приведены в боеготовность экипажем. Более чем 700 датских гражданских и американских военных лиц работали в опасных условиях без средств личной защиты, устраняя радиоактивное загрязнение. В 1987 году почти 200 датских рабочих неудачно попытались предъявить иск Соединённым Штатам. Однако некоторая информация была выпущена американскими властями согласно Закону о свободе информации. Но Kaare Ulbak, главный консультант датского Национального института радиационной гигиены, сказал, что Дания тщательно изучила здоровье рабочих в Туле и не нашла свидетельств увеличения смертности или заболеваемости раком.
Пентагон опубликовал информацию о том, что все четыре атомных боезаряда были найдены и уничтожены. Но в ноябре 2008 года обозреватель Би-би-си Гордон Корера (англ. Gordon Corera) высказал предположение, основанное на анализе рассекреченных документов, что, вопреки утверждениям Пентагона, четвёртая атомная бомба могла быть не разрушена, а потеряна в результате катастрофы, и целью подводных работ 1968 года были её поиски. История получила широкое распространение в СМИ различных стран. Министр иностранных дел Дании Пер Стиг Меллер поручил Датскому институту международных отношений провести независимый анализ рассекреченных документов, оказавшихся в распоряжении журналиста. Отчёт был опубликован в 2009 году. В нём говорится: «Мы показали, что четыре ядерные бомбы были уничтожены при взрывах, последовавших за крушением. Это не обсуждается, и мы можем дать ясный ответ: никакой бомбы нет, никакой бомбы не было, и американцы не искали бомбу.»
США, 2007
Основная статья: Инцидент с ядерными боезарядами в ВВС США (2007)
29 августа 2007 года 6 крылатых ракет AGM-129 ACM с термоядерными боевыми частями (боеголовки W80 изменяемой мощности 5-150 кт) были по ошибке установлены на бомбардировщик B-52H на авиабазе Майнот в Северной Дакоте и отправлены на авиабазу Барксдейл в Луизиане. О факте наличия на ракетах ядерных боезарядов стало известно случайно и лишь 36 часов спустя. После погрузки в Майноте и по прилёте в Барксдейл, самолёт около суток не охранялся. Инцидент стал причиной громкого скандала в США, ряда отставок в Военно-воздушных силах и реорганизации управления стратегическими ядерными силами США.
Чистое термоядерное оружие
Основная статья: Чистое термоядерное оружие
Теоретически возможный тип термоядерного оружия, в котором условия для начала реакции термоядерного синтеза создаются без применения ядерного триггера. Таким образом, чистая термоядерная бомба вообще не включает распадающихся материалов и не создаёт долговременного радиоактивного поражения. Ввиду технической сложности инициирования термоядерной реакции в требуемом масштабе в настоящее время создать чистый термоядерный снаряд разумных размеров и веса практически не представляется возможным.
Следует отметить, что в Снежинске разработан самый чистый ядерный заряд, предназначенный для мирных применений, в котором 99,85 % энергии получается за счёт синтеза ядер лёгких элементов, то есть на долю реакций деления приходится лишь 1/700 общего количества энергии.
Токамак
Для создаваемого устройства И. Н. Головин придумал название — токамак (ТОроидальная КАмера с МАгнитными Катушками). Токамак-1 (Т-1) и Токамак-2 (Т-2) оказались неудачными — плазма разрушалась очень быстро. Наконец, в 1968 году на Т-3 был достигнут некоторый успех — плазма с температурой 10 миллионов градусов просуществовала почти секунду. При этом были зафиксированы нейтроны — продукты термоядерной реакции синтеза. Успех был повторен английскими физиками на их аналогичном устройстве. В мире начался настоящий бум сооружения подобных устройств — к 1986 году их общее число достигло 300. Этому способствовало полное рассекречивание работ по мирному использованию термоядерной энергии, которые велись в СССР.
В 1956 году И. В. Курчатов на конференции физиков-ядерщиков в английском ядерном центре Харуэлл сделал доклад, в котором рассказал об идее токамака и ее осуществлении в СССР. А в это время еще существовала во всех странах полная секретность работ по ядерной энергетике (о запуске в СССР ядерной электростанции в 1954 году было объявлено, но детали ее конструкции оставались строго секретными). Поэтому доклад Курчатова стал сенсацией. Мировое сообщество физиков-ядерщиков было поражено успехами советской физики и размахом работ по термоядерному синтезу. Сам термин «токамак» стал международным словом, не требующим перевода (несколько ранее так было со словом «спутник»).
В разных проектах использовались различные термоядерные реакции. Вот только некоторые из них (с указанием кинетической энергии продуктов реакции):
2H + 2H → 1H + 3H + 4,0 МэВ,2H + 2H → 3He + 1n + 3,3 МэВ,2H + 3H → 4He + 1n + 17,6 МэВ,3He + 3He → 4He + 21p + 12,8 МэВ,2H + 3He → 1p + 4He + 18,5 МэВ,2H+ 7Li → 24He + 1p + 16,9 МэВ.
Внутри звезд, где кроме водорода, гелия и лития присутствуют и ядра других легких элементов, возможны и иные ядерные реакции синтеза. Но основное энерговыделение определяется превращением водорода в гелий. Кинетическая энергия продуктов этих реакций синтеза в расчете на одну частицу оказалась в несколько раз больше, чем в реакциях деления тяжелых ядер.
Токамаки все больше увеличивались в размерах, создавались все более сильные магнитные поля, возрастала сила тока в плазме. При токах в тысячи ампер воздействующие на них магнитные поля должны иметь индукцию не менее 10 тесла — это в сотни тысяч раз больше магнитного поля Земли и в тысячи раз больше магнитных полей в электромагнитах подъемных кранах. Существование магнитного поля в катушке электромагнита определяется током в его обмотке. Для создания магнитных полей в десятки тесла сила тока в обмотке должна составлять десятки тысяч ампер. А это возможно только тогда, когда обмотки не будут иметь электрического сопротивления, т.е. будут сделаны из сверхпроводящего материала, и их температура не будет превышать 4 кельвинов. Единственным охладителем до таких температур может быть только жидкий гелий.
Технология создания сверхсильных магнитных полей создавалась для различных целей — для ускорителей заряженных частиц, для медицинских томографов. Но в этих случаях магнитное поле имело обычную соленоидальную форму. А в токамаке создание необычного тороидального поля требовало и необычных сердечников, и необычных их обмоток. Важнейшим вопросом становилась и защита внутренних стенок реакционной камеры от случайных выбросов плазмы с ее многомиллионной температурой, и защита этих стенок от разрушающего действия быстрых нейтронов, и десятки других трудностей, которые нужно было преодолевать. Мечта о 5–10 годах для решения проблемы «приручения» термоядерной реакции так и осталась мечтой.
В 1985 году были построены Токамак-15 и Токамак-16. Это были совместные разработки СССР — Китай и СССР — Япония, поскольку в Советском Союзе уже не было возможности затратить на эти работы миллионы долларов. Зато научными руководителями проектов были российские ученые — академики Б. Б. Кадомцев и Е. П. Велихов (Е. П. даже был награжден японским «Орденом восходящего солнца»). Длительность устойчивого состояния плазмы в этих реакторах уже превышала секунду. Но главное, стало ясно, что для длительного устойчивого состояния плазмы необходимы реакторы значительно больших размеров — примерно в 10 раз больших, чем Токамак-16. Стоимость сооружения такого реактора оценивалась уже в несколько миллиардов долларов. И ни одна страна в мире (включая и США) не могла себе позволить такой научный эксперимент. Тем более, что предполагаемый реактор мог и не дать ожидаемого результата.
Модификации ГАЗ 2705
ГАЗ 2705 2.7 MT
Цена от |
1 264 000 ₽ |
Максимальная скорость, км/ч | 130 |
Время разгона до 100 км/ч, сек | 30 |
Двигатель | Бензиновый |
Рабочий объем, см3 | 2690 |
Мощность, л.с. / оборотах | 107/4000 |
Момент, Н·м / оборотах | 221/2350 |
Расход комби, л на 100 км | — |
Тип коробки передач | Механическая, 5 передач |
Привод | Задний |
Показать все характеристики |
ГАЗ 2705 2.7 MT 4х4
Цена от |
1 264 000 ₽ |
Максимальная скорость, км/ч | 130 |
Время разгона до 100 км/ч, сек | 30 |
Двигатель | Бензиновый |
Рабочий объем, см3 | 2690 |
Мощность, л.с. / оборотах | 107/4000 |
Момент, Н·м / оборотах | 221/2350 |
Расход комби, л на 100 км | — |
Тип коробки передач | Механическая, 5 передач |
Привод | Полный |
Показать все характеристики |
ГАЗ 2705 2.9 MT
Цена от |
1 304 000 ₽ |
Максимальная скорость, км/ч | 120 |
Время разгона до 100 км/ч, сек | 30 |
Двигатель | Бензиновый |
Рабочий объем, см3 | 2890 |
Мощность, л.с. / оборотах | 100/4000 |
Момент, Н·м / оборотах | 221/2350 |
Расход комби, л на 100 км | — |
Тип коробки передач | Механическая, 5 передач |
Привод | Задний |
Показать все характеристики |
ГАЗ 2705 2.8 TD MT 4х4
Цена от |
1 539 000 ₽ |
Максимальная скорость, км/ч | 120 |
Время разгона до 100 км/ч, сек | 25 |
Двигатель | Дизельный с турбонаддувом |
Рабочий объем, см3 | 2781 |
Мощность, л.с. / оборотах | 120/3600 |
Момент, Н·м / оборотах | 270/1400-3000 |
Расход комби, л на 100 км | — |
Тип коробки передач | Механическая, 5 передач |
Привод | Полный |
Показать все характеристики |
ГАЗ 2705 2.8 TD MT
Цена от |
1 599 000 ₽ |
Максимальная скорость, км/ч | 120 |
Время разгона до 100 км/ч, сек | 25 |
Двигатель | Дизельный с турбонаддувом |
Рабочий объем, см3 | 2781 |
Мощность, л.с. / оборотах | 120/3600 |
Момент, Н·м / оборотах | 270/1400-3000 |
Расход комби, л на 100 км | — |
Тип коробки передач | Механическая, 5 передач |
Привод | Задний |
Показать все характеристики |