Сколько звёзд во вселенной и бесконечна ли она?

Содержание:

Содержание

Какие звезды называют маяками Вселенной

Что интересно, не все светила носят такое название, а лишь цефеиды. Они обладают мощным излучением, которое в несколько тысяч раз больше солнечного.Цефеиды — отдельный класс, представляющий небесные звезды с высокой светимостью. Причем это пульсирующие переменные, сверхгигантские светила. Среди переменных объектов у цефеид хорошо изучили зависимость между периодом и светимостью. Что, соответственно, позволяет использовать их как стандартные свечи. Другими словами по ним определяют расстояния до космических объектов, в том числе самых отдалённых. Так, к примеру, астрономы устанавливают расстояние до других галактик.Собственно говоря, именно поэтому цефеиды называют маяками Вселенной.

Цефеиды

Карликовая галактика

Условия получения отсрочки после колледжа

Выпускники школ, лицеев, успевшие поступить в ВУЗ, автоматически получают отсрочку от армии до окончания учебы по степени бакалавр. Затем при поступлении в магистратуру, аспирантуру, интернатуру, докторантуру. Не предоставляется отсрочка на второе высшее образование. Если непрерывный процесс обучения длится, пока молодому человеку исполнится 27 лет, в армию его не заберут вовсе, выдадут военный билет.

Что же касается второй отсрочки после колледжа, на законных основаниях ее получить невозможно. Тут приходится идти на ухищрения. Освобождение получают по состоянию здоровья либо игнорируют повестки. Согласно действующему законодательству, повестка считается врученной, если ее передали лично в руки призывнику. Очень часто студенты учатся в других городах, живут на квартирах без прописки. Дома их нет, в другом городе не найдут.

На законных основаниях получить вторую отсрочку по учебе после окончания колледжа можно при соблюдении условий, указанных во втором разделе статьи.

Звездная эволюция

Основываясь на массе звезды, можно определить весь ее эволюционный путь, так как он проходит по определенным шаблонным этапам. Есть звезды промежуточной массы (как Солнце) в 1.5-8 раз больше солнечной массы, более 8, а также до половины солнечной массы. Интересно, что чем больше масса звезды, тем короче ее жизненный срок. Если она достигает меньше десятой части солнечной, то такие объекты попадают в категорию коричневых карликов (не могут зажечь ядерный синтез).

Объект с промежуточной массой начинает существование с облака, размером в 100000 световых лет. Для сворачивания в протозвезду температура должна быть 3725°C. С момента начала водородного слияния может образоваться Т Тельца – переменная с колебаниями в яркости. Последующий процесс разрушения займет 10 миллионов лет. Дальше ее расширение уравновесится сжатием силы тяжести, и она предстанет в виде звезды главной последовательности, получающей энергию от водородного синтеза в ядре. Нижний рисунок демонстрирует все этапы и трансформации в процессе эволюции звезд.

Этапы эволюции звезды

Когда весь водород переплавится в гелий, гравитация сокрушит материю в ядро, из-за чего запустится стремительный процесс нагрева. Внешние слои расширяются и охлаждаются, а звезда становится красным гигантом. Далее начинает сплавляться гелий. Когда и он иссякает, ядро сокращается и становится горячее, расширяя оболочку. При максимальной температуре внешние слои сдуваются, оставляя белый карлик (углерод и кислород), температура которого достигает 100000 °C. Топлива больше нет, поэтому происходит постепенно охлаждение. Через миллиарды лет они завершают жизнь в виде черных карликов.

Процессы формирования и смерти у звезды с высокой массой происходят невероятно быстро. Нужно всего 10000-100000 лет, чтобы она перешла от протозвезды. В период главной последовательности это горячие и голубые объекты (от 1000 до миллиона раз ярче Солнца и в 10 раз шире). Далее мы видим красного сверхгиганта, начинающего сплавлять углерод в более тяжелые элементы (10000 лет). В итоге формируется железное ядро с шириною в 6000 км, чье ядерное излучение больше не может противостоять силе притяжения.

Когда масса звезды приближается к отметке в 1.4 солнечных, электронное давление больше не может удерживать ядро от крушения. Из-за этого формируется сверхновая. При разрушении температура поднимается до 10 миллиардов °C, разбивая железо на нейтроны и нейтрино.  Всего за секунду ядро сжимается до ширины в 10 км, а затем взрывается в сверхновой типа II.

Туманность Эскимоса — один из последних этапов эволюции небольшой звезды

Если оставшееся ядро достигало меньше 3-х солнечных масс, то превращается в нейтронную звезду (практически из одних нейтронов). Если она вращается и излучает радиоимпульсы, то это пульсар. Если ядро больше 3-х солнечных масс, то ничто не удержит ее от разрушения и трансформации в черную дыру.

Звезда с малой массой тратит топливные запасы так медленно, то станет звездой главной последовательности только через 100 миллиардов – 1 триллион лет. Но возраст Вселенной достигает 13.7 миллиардов лет, а значит такие звезды еще не умирали. Ученые выяснили, что этим красным карликам не суждено слиться ни с чем, кроме водорода, а значит, они никогда не перерастут в красных гигантов. В итоге, их судьба – охлаждение и трансформация в черные карлики.

Комплектация

  • Чехол для переноски.
  • Корпус пенала.
  • Крышка пенала.
  • Отвёртка.
  • Выколотка.
  • Ерш.
  • Протирка.
  • Нож-скребок.
  • Обойма.
  • Шомпол.
  • Масленка.
  • Чехол прицела.
  • Сумка для прицела и магазинов.
  • Магазины.
  • Сумка под ЗИП.
  • Ремень для ношения оружия.
  • Каждый автомат комплектуется индивидуальным (одиночным) комплектом запасных частей и принадлежностей (ЗИП-О). Он предназначен для обеспечения эксплуатации образца оружия и поддержания его в исправном состоянии. В состав ЗИП-О винтовки входят:
  • шомпол — имеет с одной стороны кольцо, а с другой — резьбу для навинчивания протирки, ерша или скребка.
  • масленка — стандартная, от автоматов АКМ.
  • принадлежность — стандартная, от автоматов АКМ.
  • скребок — предназначен для удаления порохового нагара с внутренней поверхности корпуса глушителя. Для чистки он навинчивается на шомпол. В процессе эксплуатации оружия конструкция скребка была изменена.
  • нож — служит для удаления порохового нагара с поверхностей сепаратора, ствола и газового поршня. Нож имеет два лезвия — для чистки наружных поверхностей ствола и газового поршня, и для чистки сепаратора.
  • шесть 20-зарядных магазинов,
  • ремень.

В состав укладочных средств автомата входят:

  • чехол для переноски автомата,
  • сумка для переноски прицела
  • жилет для размещения и переноски — шести магазинов, двух сигнальных ракет, или одной сигнальной ракеты и ножа, трех ручных гранат, пистолета ПСС и запасного магазина к нему.

Магазины автомата взаимозаменяемы с таковыми у винтовки ВСС Винторез.

Простой способ получения высококачественного графена: две секунды в микроволновой печи +11

  • 02.09.16 05:03


alizar

#280030

Гиктаймс

18800

Энергия и элементы питания, Научно-популярное, Физика, Производство и разработка электроники, Химия

Волокна графена под сканирующим электронным микроскопом. Чистый графен восстановлен из оксида графена (GO) в микроволновой печи. Масштаб 40 мкм (слева) и 10 мкм (справа). Фото: Jieun Yang, Damien Voiry, Jacob Kupferberg / Rutgers University
Графен — 2D-модификация углерода, образованная слоем толщиной в один атом углерода. Материал обладает высокой прочностью, высокой теплопроводностью и уникальными физико-химическими свойствами. Он демонстрирует максимальную подвижность электронов среди всех известных материалов на Земле. Это делает графен практически идеальным материалом в самых различных приложениях, в том числе в электронике, катализаторах, элементах питания, композитных материалах и т.д. Дело за малым — научиться получать качественные слои графена в промышленных масштабах.
Химики из Ратгерского университета (США) нашли простой и быстрый метод производства высококачественного графена путём обработки оксида графена в обычной микроволновой печи. Метод на удивление примитивный и эффективный.
Оксид графита — соединение углерода, водорода и кислорода в различных соотношениях, которое образуется при обработке графита сильными окислителями. Чтобы избавиться от оставшегося кислорода в оксиде графита, а затем получить чистый графен в двумерных листах, нужно приложить значительные усилия.
Оксид графита смешивают с сильными щелочами и ещё дальше восстанавливают материал. В результате получаются мономолекулярные листы с остатками кислорода. Эти листы принято называть оксидом графена (GO). Химики испробовали разные способы удаления лишнего кислорода из GO (, , , ), но восстановленный такими способами GO (rGO) остаётся сильно неупорядоченным материалом, который далёк по своим свойствам от настоящего чистого графена, полученного методом химического осаждения из газовой фазы (ХОГФ или CVD).
Даже в неупорядоченной форме rGO потенциально может быть полезен для энергоносителей (, , , , ) и катализаторов (, , , ), но для извлечения максимальной выгоды от уникальных свойств графена в электронике нужно научиться получать чистый качественный графен из GO.
Химики из Ратгерского университета предлагают простой и быстрый способ восстановления GO до чистого графена, используя 1-2-секундные импульсы микроволнового излучения. Как видно на графиках, графен, полученный «микроволновым восстановлением» (MW-rGO) по своим свойствам намного ближе к чистейшему графену, полученному с помощью ХОГФ.Физические характеристики MW-rGO, по сравнению с нетронутым оксидом графена GO, восстановленным оксидом графена rGO и графеном, полученным методом химического осаждения из газовой фазы (CVD). Показаны типичные хлопья GO, осаждённые на кремниевую подложку (А); рентгеновская фотоэлектронная спектроскопия (B); рамановская спектроскопия и соотношение размера кристаллов (La) к отношению пиков l2D/lG в рамановском спектре для MW-rGO, GO и ХОГФ (CVD). Иллюстрации: Rutgers UniversityЭлектронные и электрокаталитические свойства MW-rGO, по сравнению с rGO. Иллюстрации: Rutgers University
Техпроцесс получения MW-rGO состоит из нескольких этапов.

  1. Окисление графита модифицированным методом Хаммерса и растворение его до однослойных хлопьев оксида графена в воде.
  2. Отжиг GO, чтобы материал стал более восприимчив к микроволновому облучению.
  3. Облучение хлопьев GO в обычной микроволновой печи мощностью 1000 Вт на 1-2 секунды. Во время этой процедуры GO быстро нагревается до высокой температуры, происходит десорбция кислородных групп и великолепная структуризация углеродной решётки.

На изображениях с просвечивающего электронного микроскопа показана структура листов графена со шкалой 1 нм. Слева — однослойный rGO, на котором много дефектов, в том числе функциональные группы кислорода (синяя стрелка) и дыры в углеродном слое (красная стрелка). По центру и справа — отлично структурированный двуслойный и трёхслойный MW-rGO. Фото: Rutgers University2коэффициента Тафеля«High-quality graphene via microwave reduction of solution-exfoliated graphene oxide»опубликованаScience

Поиски истины продолжаются

Ранее излюбленный астрономами оптический способ наблюдения оказался не способным обнаружить все объекты наблюдаемого участка космоса.


Поэтому дополнительно проводятся исследования в инфракрасном и рентгеновском диапазоне. Эта работа отнимает много времени учёных всего мира. А каталог пополняется новыми объектами. Количество обнаруженных объектов неуклонно растёт.

К примеру, в 2014 году новый телескоп Ultra Deep Field исследовал 1/13000000 часть наблюдаемого неба и обнаружил порядка десяти тысяч галактик на этом участке. Вся эта информация требует тщательной обработки и анализа. Для дальнейшего, более полного понимания строения Вселенной.

Возможно, со временем мы поймём, что наши знания о том, сколько звёзд во Вселенной, ошибочны. Сам же космос безграничен или имеет другую структуру пространства. И вполне может оказаться, что мы живём в одной из множества Вселенных. Какова бы ни была истина, стремление человечества к познанию рано или поздно приведёт к ответу на поставленный вопрос.

Попрощаться со всеми друзьями и близкими

Какие бывают звезды?

Звезды различаются по температуре, возрасту, массе, размерам, плотности, светимости и химическому составу.

По температуре различают красные, желтые, белые, голубые. Среди них самые холодные красные: температура на поверхности такой звезды составляет не более 3000°С. Желтые звезды — к ним относится и наше Солнце — имеют температуру около 6000°С; белые «разогреты» от 10 000 до 20 000°С; голубоватые же звезды — самые горячие — раскалены более чем до 30 000°С (иногда до 100 000°С). Но это температура поверхности звезд. Внутри этих светил еще жарче — до 20 млн °С.

Белый карлик — звезда, имеющая большую массу (порядка солнечной) и малый радиус, близкий к радиусу Земли. Зато плотность белого карлика огромна: масса 1 см3 его вещества равняется 29 т

В зависимости от размеров звезды величают гигантами (самые большие) и карликами (наименьшие). Диаметр так называемых белых карликов может быть в 100 с лишним раз меньше диаметра Солнца, при этом масса таких звезд примерно равна солнечной. По численности такие карлики составляют от 3 до 10% звездного «населения» нашей галактики.

Чем больше звезды, тем реже они встречаются в пространстве. Особенно редки гиганты. Самыми крупными являются красные гиганты. К примеру, диаметр красной звезды Бетельгейзе из созвездия Ориона более чем в 300 раз превосходит диаметр Солнца. А красный Антарес в созвездии Скорпиона по диаметру в 450 раз больше нашего светила и даже превышает орбиту Марса.

Сравнение размеров звезд и планет

Одной из самых больших ныне известных звезд является красный сверхгигант Мю Цефея. Внутри этой звезды могли бы уместиться орбиты планет Солнечной системы вплоть до Юпитера. Мю Цефея, также известная как «гранатовая звезда Гершеля», является красным сверхгигантом и находится в созвездии Цефея.

Около половины звезд являются одиночными (как Солнце), остальные образуют двойные (например, Сириус), тройные и более сложные системы. Чем больше звезд в системе, тем реже она встречается. Известны звездные системы из семи членов, но более сложные пока не обнаружены.

Основное понятие

Вселенная — это все, что нас окружает, о чем мы знаем и догадываемся, что было, есть и будет. Если снизить накал романтизма, то этим понятием определяется в науке все, существующее физически, с учетом временного аспекта и законов, регулирующих функционирование, взаимосвязь всех элементов и так далее.

Естественно, представить себе реальные размеры Вселенной достаточно трудно. В науке этот вопрос является широко обсуждаемым и единого мнения пока нет. В своих предположениях астрономы опираются на существующие теории формирования мира, каким мы его знаем, а также на полученные в результате наблюдения данные.

Ожидаемое будущее и прогнозы

Вследствие постоянного движения нашей галактики и соседних с нею тел неминуемы их столкновения, но точные их даты и последствия предсказать невозможно: скорость внегалактических объектов пока неизвестна.

Через 4 млрд лет Млечный Путь может поглотить Малое и Большое Магеллановы Облака, свои галактики-спутники, а через 5 млрд лет его присоединит к себе Туманность Андромеды. Существует и другой вариант развития событий — два галактических гиганта через 4,5 млрд лет немного столкнутся друг с другом по касательной.

Стрелец А будет постоянно увеличиваться в размерах, став больше сегодняшнего состояния в 10 раз через 2 млрд лет. В результате этого он вытолкнет Солнечную систему в межгалактическое пространство.

История открытия

Большинство небесных тел объединяются в различные вращающиеся системы. Так, Луна обращается вокруг Земли, спутники планет-гигантов образуют свои, богатые телами, системы. На более высоком уровне, Земля и остальные планеты обращаются вокруг Солнца. Возникал естественный вопрос: не входит ли и Солнце в систему ещё большего размера?

Первое систематическое исследование этого вопроса выполнил в XVIII веке английский астроном Уильям Гершель. Он подсчитывал количество звёзд в разных областях неба и обнаружил, что на небе присутствует большой круг (впоследствии он был назван галактическим экватором), который делит небо на две равные части и на котором количество звёзд оказывается наибольшим. Кроме того, звёзд оказывается тем больше, чем ближе участок неба расположен к этому кругу. Наконец обнаружилось, что именно на этом круге располагается Млечный Путь. Благодаря этому Гершель догадался, что все наблюдаемые нами звёзды образуют гигантскую звёздную систему, которая сплюснута к галактическому экватору.

Вначале предполагалось, что все объекты Вселенной являются частями нашей Галактики, хотя ещё Кант высказывал предположение, что некоторые туманности могут быть галактиками, подобными Млечному Пути. Ещё в 1920 году вопрос о существовании внегалактических объектов вызывал дебаты (например, известный Большой спор между Харлоу Шепли и Гебером Кёртисом; первый отстаивал единственность нашей Галактики). Гипотеза Канта была окончательно доказана лишь в 1920-х годах, когда Эрнсту Эпику и Эдвину Хабблу удалось измерить расстояние до некоторых спиральных туманностей и показать, что по своему удалению они не могут входить в состав нашей Галактики.

Молодой президент

Расстояние

Без знания, как далеко космический объект, невозможно
оценить физические характеристики. Звездный параллакс – сложный с точки зрения
математики метод, применять который впервые начал Тихо Браге. С 1833 по 1838
одновременно несколько ученых, в том числе и русский астроном В. Я. Струве,
измерили расстояние до Альфы Центавра, Веги и 61 Лебедя.

Земная атмосфера сильно мешает наблюдению за космосом.
Расстояние, вычисленное с помощью наземного телескопа, может иметь погрешность
до 50%. Ситуация изменилась после появления спутников. Астрометрический метод
точно определяет, как далеко находится космическое тело.

На основании параллакса специально для измерения расстояния
до дальних звезд ввели внесистемную единицу – парсек (ПАРаллакс+СЕКунда). Он
равен 206265 астрономическим единицам. Свет пролетает парсек за 3,2616 г.
Употребляются кратные единицы: кило-, мега- и гигапарсек.

Нужно помнить о скорости света. Любой объект наблюдатель с
Земли видит таким, каким он был то время назад, каково до него расстояние в
световых годах.

Возраст и размеры

Согласно некоторым моделям Вселенной, она никогда не появлялась, а существует вечно. Однако главенствующая сегодня теория Большого взрыва задает нашему миру «отправную точку». По представлениям астрономов, возраст Вселенной — примерно 13,7 млрд лет. Если переместиться назад во времени, то можно вернуться к Большому взрыву. Независимо от того, бесконечны ли размеры Вселенной, наблюдаемая ее часть имеет границы, поскольку конечна скорость света. В нее входят все те местоположения, которые могут оказывать воздействие на земного наблюдателя со времени Большого взрыва. Размеры наблюдаемой Вселенной увеличиваются благодаря ее постоянному расширению. По последним оценкам, она занимает пространство в 93 миллиарда световых лет.

Так сколько же звезд вмещает наблюдаемая Вселенная

Не стоит забывать, что Млечный Путь не единственная подобная система. Возникает вопрос, сколько галактических объединений во всём космическом пространстве? На самом деле, точного ответа нет. Возможно, наша Вселенная действительно бесконечна. А значит, она может вмещать бесконечное число галактик и, соответственно светил.По современным представлениям, выделяют видимую часть Вселенной. По другому её называют наблюдаемой, а также Метагалактикой. То есть эта область, которую можно наблюдать с Земли или с помощью космических аппаратов и телескопов.Согласно последним данным, видимая область включает в себя различные галактики, точное количество которых неизвестно. Как считают учёные, их число составляет от 500 миллиардов до 2 триллионов.

Множество галактик

Что интересно, Млечный Путь представляет собой обычную, можно сказать, классическую систему. Если, действительно, в наблюдаемой части космоса 2 триллиона галактик, и каждая из них содержит 400 миллиардов звёздных объектов, то получается:2 000 000 000 000*400 000 000 000= 8 × 10²³В общем, триллионы миллиардов и одна тысяча звезд. С такой точки зрения, Вселенная, и правда, бесконечна.

Тогда, трудно представить сколько звезд содержит вся небесная сфера.Благодаря развитию астрономии учёные определили различные необычные звезды во Вселенной. Но вот с точностью оценить их количество им не под силу. Однако не стоит расстраиваться. Возможно, в будущем мы сможем исследовать самые дальние уголки космоса. И тогда, много таин будет раскрыто.

Методы визуализации количества звезд

Но паниковать не стоит, ведь всегда есть лазейки. Инфракрасные камеры позволяют пробраться сквозь пыль и дым. Среди подобных проектов можно вспомнить телескоп Спитцер, COBE, WISE и Германская космическая обсерватория.

Все они появились в последний десяток лет, чтобы изучить пространство в инфракрасных длинах волн. Это помогает отыскать скрытые звезды. Но и это не позволяет увидеть всего, поэтому ученые вынуждены производить расчеты и выдвигать предположительные цифры. Наблюдения начинаются со звездных орбит на галактическом диске. Благодаря этому вычисляется орбитальная скорость и период вращения (движения) Млечного Пути.

Эпизод I. Протозвезды

Протопланетный диск, окружающий молодую солнечную систему в туманности Ориона

Жизненный путь звезд, как и всех объектов макромира и микрокосма, начинается с рождения. Это событие берет свое начало в формировании невероятно огромного облака, внутри которого появляются первые молекулы, поэтому образование называется молекулярным. Иногда употребляется еще и другой термин, непосредственно раскрывающий суть процесса, – колыбель звезд.

Только когда в таком облаке, в силу непреодолимых обстоятельств, происходит чрезвычайно быстрое сжатие составляющих его частиц, имеющих массу, т. е. гравитационный коллапс, начинает формироваться будущая звезда. Причиной этому является выплеск энергии гравитации, часть которой сжимает молекулы газа и разогревает материнское облако. Затем прозрачность образования постепенно начинает пропадать, что способствует еще большему нагреванию и возрастанию давления в его центре. Заключительным эпизодом в протозвездной фазе является аккреция падающего на ядро вещества, в ходе чего происходит рост зарождающегося светила, и оно становится видимым, после того, как давление испускаемого света буквально сметает всю пыль на окраины.

Обозначения

Рождение и жизнь звезды

Звезды, как и живые существа, рождаются, живут и умирают. Продолжительность их жизни настолько велика (до десятков миллиардов лет), что астрономы не могут проследить жизнь хотя бы одной из них от начала до конца. Зато ученых есть возможность наблюдать за звездами, находящимися на разных стадиях развития.

Образуются звезды из газопылевых облаков. Они сжимаются, потому что частицы притягиваются друг к другу. При этом температура и плотность вещества сильно возрастает. На данной стадии это уже не облако, но еще и не звезда. Поэтому его называют протозвездой (от греч. «протос» — «первый»). Постепенно ее температура достигает нескольких миллионов градусов, и тогда начинаются термоядерные реакции. Протозвезда становится звездой и многие миллиарды лет излучает энергию.

Газопылевое облако, которое впоследствии станет звездой

Звезда светит до тех пор, пока ее внешние слои не начинают остывать. Постепенно истощаются запасы водорода, что приводит к затуханию термоядерных реакций в недрах звезды. Остывающие внешние слои начинают светиться красным, и звезда превращается в красного гиганта. Красный гигант продолжает терять яркость до тех пор, пока не гаснет. В зависимости от размера красные гиганты могут, например, превратиться в красного карлика, или взорваться, превратившись в белого карлика, который впоследствии либо угаснет, либо превратится в нейтронную звезду, или сжаться в черную дыру.

Когда жизнь звезд подходит к концу, термоядерные реакции затухают. В результате под воздействием гравитационных сил, которые сжимают звезду, она эволюционирует в белого карлика

Сколько звезд в нашей Галактике

Как известно, наша планета Земля находится в галактике Млечный Путь. По оценке астрономов, в ней содержится от 200 до 400 миллиардов светил. Безусловно, они различаются по физическим свойствам и характеристикам, возрасту и удалённости.Правда, число, так сказать, млечных светил лишь предполагаемое. Ведь изучение и исследование галактики продолжаются и по сей день.Впрочем, некоторые из них нам хорошо известны. В основном, это видимые с земной поверхности звёздные тела или те, которые относительно недалеко расположены от нас. К слову, в астрономии существует утверждённая таблица звезд

Млечный Путь

Сколько звёзд в нашей Галактике?

Наша Галактика называется Млечный Путь. Именно в ней находится Солнечная система, а также множество других. Данная галактика считается спиральной с перемычкой. Её диаметр составляет приблизительно 30 тысяч парсек, что в переводе на световые лета составляет 100 000. Если же перевести в более привычную для человека единицу измерения расстояния, то это будет 1 квинтиллион километров. Примерная толщина Млечного Пути – 1 000 световых лет.

Интересный факт: Многие звёзды предпочитают парное существование. Они считаются двойными звёздами, имеющими один на двоих центр тяжести. Примечательно, что во вселенной встречаются и целые группы, где на один центр тяжести приходится по 3-4 звезды. Что же касается нашего Солнца, то эта звезда – одиночка. А ведь как было бы интересно встречать рассвет сразу с 2-3 небесными светилами.


Сколько звёзд в нашей Галактике?

Согласно последним оценочным данным, в нашей галактике есть примерно 200-400 миллиардов звёзд. Большая их часть скопилась таким образом, что издалека это похоже на плоский диск. Помимо обычных звёзд имеются в Млечном Пути и коричневые карлики в количестве 25-100 миллиардов.

См. также

Особенности конструкции

Ствол ВСС

Ствол с шестью правыми нарезами изготовлен из хромированной стали, имеет длину 200 миллиметров. В средней части расположена полость для отводимых газов (газовая камера), а также площадка для крепления устройства, снижающего шум от выстрела. В дуле нарезаны 54 отверстия, которые позволяют отвести пороховые газы в расширительный отсек глушителя. С помощью специальной сепараторной пружины обеспечивается центрирование глушителя относительно направляющей ствольного канала.

Приклад

Приклад скелетного типа изготавливается из фанеры, имеющей большое количество слоев. Он прикрепляется к специальной накладке ствольной коробке, имеющей фиксатор. Такая конструкция дает возможность при необходимости быстро рассоединить элементы.

Ствольная коробка

Эта часть конструкции позволяет соединить узлы оружия. Ствольную коробку получают путем фрезерной обработки из стали. Такая схема существенно повышает конструктивную жесткость, однако при этом увеличивается трудозатратность и стоимость производства «Винтореза».

Специальная крышка помогает защитить оружейные механизмы и узлы от пыли и грязи. С правой стороны на ней находятся отверстия для выброса стреляных гильз и специальный вырез для того, чтобы рукоятка затворной рамы могла двигаться. С левой стороны находятся выступы для крепления оптики.

Глушитель

Интегрированный комплекс глушителя и сепаратора обеспечивают бесшумность выстрела. Глушитель состоит из надульного отсека и расширительной камеры, которая позволяет сбрасывать пороховые газы. Внутри корпуса размещается прицельная колодка с планкой и фиксатор для сепаратора.

В передней части установлен сам сепаратор, включающий в свой состав: шайбу, вставку, обойму и втулку, устанавливающуюся на сепараторную пружину.

Предохранитель

Механизм предотвращает возможность случайных выстрелов при ударах или других непредвиденных ситуациях. Это обеспечивается за того, что предохранитель закрывает окна для перемещения рукояти перезарядки.

Прицелы

В зависимости от времени суток, на «Винторез» могут устанавливаться ночные или дневные оптические прицелы.

ПСО-1-1 обеспечен удобной прицельной сеткой, рассчитанной специально под использование патрона СП-5. Дистанционная шкала позволяет снайперу рассчитать необходимую поправку и определить расстояние, не вращая маховики. Герметичный корпус, наполненный азотом, полностью исключает запотевание при изменении температуры воздуха от 50 градусов холода до 50 тепла. Также возможно применение еще одного дневного прицела – 1П43 (ПСВ), с четырехкратным увеличением и подсветкой.

Для ночного времени суток могут применяться МБНП-1 (1ПН75) и НСПУ-3 (МБНП-18).

Существуют более новые модификации, в частности 1ПН93. При поломке дневной оптики можно использовать механический прибор, состоящий из секторного прицела и мушки с намушником. Регулировка происходит по горизонтальному направлению и высоте.

Конструктивные преимущества

По сравнению с другими моделями «Винторез» следующие достоинства:

  • высокая точность и кучность стрельбы обеспечивается модернизированной конструкцией ствола;
  • благодаря интегрированному глушителю ВСС может вести бесшумную стрельбу с отсутствием вспышки при выстреле;
  • глушитель используется в течение всего срока службы без замены;
  • пуля имеет высокую скорость и мощное поражающее действие;
  • конструктивные особенности позволяют производить быстрый демонтаж и сборку оружия;
  • разборка винтовки на три части делает возможным ее скрытое ношение; двухрядный механизм, в котором патроны располагаются в шахматном порядке;
  • безопасность применения обеспечивает предохранитель, который полностью исключает произведение выстрела при случайном нажатии спускового крючка (при ударах и падениях).

Перемещение относительно видимых звезд

Звезды, видимые глазу

Мы уже не раз слышали, что только в видимой Вселенной триллионы звезд. Но есть нюанс — далеко не все из них человеку видны. Все дело в блеске, или звездной величине — тусклые светила вблизи выглядят ярче, чем очень мощные вдалеке. Чем меньше звездная величина, тем лучше видна звезда — но существует предел, после которого даже самый зоркий взгляд не различит звезду. Планка для человеческого глаза — звездная величина +7. Конкретная величина колеблется между +6 и +8 в зависимости от остроты зрения и темноты неба.

Звезды в телескоп (справа) и невооруженным глазом (слева)

В итоге из всего необъятного количества звезд человек может увидеть на небе… всего 6000! Но и это приблизительное число. Как мы уже знаем, небесная сфера делится на два полушария, в каждом из которых видно до 3000 звезд. Более того, часть звезд находится у горизонта, где их наблюдать очень сложно — их скрывает плотная атмосфера. А еще надо делать поправку на реальность, где нет идеально ровного горизонта. Его постоянно усложняют деревья, здания, холмы и прочие неровности ландшафта, уменьшая количество одновременно видимых звезд до 2500.

Интересный факт — все эти препятствия приводят к тому, что крупные обсерватории строятся в горах, на отдалении от поселений. Там атмосфера не столь плотная, а горизонта на самой высокой горе доступно больше. Особенно популярны горы у моря или океана: водная гладь, наверное, единственный в мире ровный горизонт.

Но даже это число доступно при идеальных условиях наблюдения — то есть темной безлунной ночью. Летом небо у краев ярче, чем зимой, а любой городской фонарь создает засветку. Посреди большого города число звезд на небесах падает сразу до 200–300. Следовательно, лучший вид на звезды открывается лишь зимой, на отдалении больше 5 километров от любого населенного пункта или освещенной дороги.

Чтобы увидеть больше звезд, приходится забираться очень далеко. Фото сделано с большой выдержкой.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector