Космическая одиссея 2081: как земляне будут осваивать космос

Содержание

Содержание

Рентгеновский «Спектр-РГ», который создает новую карту Вселенной

Второй аппарат серии получил название «Спектр-Рентген-Гамма» и отправился на орбиту в 2019 году — фактически, опаздывая на 21 год относительно первоначальных планов проекта, созданного в 1987 году совместным коллективом ученых СССР, Финляндии, ГДР, Дании, Италии и Великобритании.

Аппарат представляет собой ту же платформу «Навигатор» разработки НПО Лавочкина, на которой базируется и комплекс «Спектр-Р», однако состав оборудования принципиально отличается.

Изначально предполагалось оборудовать исследовательский комплекс 3 рентгеновскими и 1 ультрафиолетовым телескопами, а так же парой мониторов неба и детектором гамма-всплесков.

В окончательном варианте остались только российский ART-XC и немецкий eROSITA.

Они работают в разных, но дополняющих друг друга диапазонах, выполняя картографирование всего неба в рентгеновском диапазоне с новым уровнем точности и разрешающей способности.

«Спектр-РГ» позволит регистрировать до 90 тысяч новых рентгеновских объектов ежегодно, ранее недоступных для человеческой науки.

Обсерватория, выведенная в июле 2019 (против запланированного 2011) стала первым российским аппаратом, работающим в  на высоте полутора миллионов километров за Землей на линии Солнце — Земля.

Таким образом, на станцию действует только гравитация системы «Земля-Солнце», поэтому относительно Земли станция практически неподвижна.

В результате, с помощью нового «Спектра» будет построена подробная рентгеновская карта Млечного Пути и ближайших галактик.

Работа займет 6,5 лет и позволит обнаружить новые гравитационные линзы, открыть новые ядра и скопления галактик, уточнить модель темной энергии и, возможно, процесс эволюции темной материи — таинственных космологических сущностей.

Советы по тактике игре на T34

Не стоит забывать про нашу скорострельность, ибо без всяких «бонусов» наш танк перестреляют в любом случае. Поэтому не стоит перестреливаться в чистом поле. Играя на T34, нужно хорошо знать рельеф и различные укрытия на данной карте, ибо укрытия наше все. Наш танк является танком поддержки и расположен во второй линии.

Так же не стоит помнить про золотое правило – «Убитый друг, лучший друг», ибо нет ничего лучше персонального укрытия, которое можно еще и двигать по своему усмотрению. Башня у нас крепкая и для многих не пробиваемая, поэтому играть через башню – Must Have.

Так как дальность обзора у нашего танка маленькая, необходимо брать во взвод товарища на среднем танке (Т-44), который подсветит вам врагов, и вы спокойно нанесете урон.

Где возникла жизнь на планете Земля

Согласно современной теории, жизнь на Земле должна была появиться либо на берегу океана, либо у горячих подводных источников. Чтобы привычная нам жизнь могла самозародиться, необходимы следующие условия:

  • Жидкая вода;
  • Ионы металлов – железо, медь, цинк, магний, марганец и другие;
  • Соединения азота, углерода, серы и фосфора;
  • Достаточно энергии, чтобы из неорганических веществ образовались органические.

Все это, кроме энергии, есть в океанической воде, поэтому жизнь должна была зародиться в океане.

В катархее и архее земная атмосфера состояла из газов, содержащих углерод, азот и серу. Вероятно, они также были растворены в воде. Берега океанов состояли из глин, поры которых могли до определенного времени заменять клеточные мембраны – отделять предшественники клеток от внешней среды и обеспечивать обмен с ней.

Энергию для реакций между веществами давали либо вулканические извержения, либо электрические разряды в атмосфере.

Необходимые для жизни соединения есть и на дне океанов, у черных курильщиков – подводных гидротермальных источников. Из них бьет очень горячая и богатая минералами вода, и около них обитают бактерии-автохемотрофы.

Черные курильщики были впервые обнаружены в 1979 году на Восточно-Тихоокеанском поднятии (21 ° северной широты) учеными из Института океанографии Скриппса. Известно, что черные курильщики существуют в Атлантическом и Тихом океанах на средней глубине 2100 метров. Эти источники извергают геотермальную воду температурой до 400 °C. Высокое давление не позволяет воде закипеть — она находится в так называемом сверхкритическом состоянии.

Около черных курильщиков достаточно энергии, чтобы обеспечить синтез органических веществ из неорганических.

На Земле вскоре после формирования планеты были подходящие условия для этих процессов: жидкая вода, соединения углерода, азота, серы и фосфора, металлы и много энергии. Однако ученые допускают, что белки, нуклеиновые кислоты или даже споры бактерий попали на Землю из Космоса. В таком случае они сходным образом появились на какой-то иной планете.

После зарождения жизни из неживого новые живые организмы происходили от предыдущих. При этом они эволюционировали – приспосабливались к условиям окружающей среды на протяжении многих поколений. Разные приспособления дали начало разным доменам: археям и бактериям. После того, как в атмосфере Земли появился кислород, живым организмам потребовалась защита от него.

Вероятно, так появились эукариоты. Развитие способов защиты от кислорода и его использования привело к появлению многоклеточных организмов, обитавших в океанах. Позднее они освоили сушу, где продолжают эволюционировать.

Филогенетическое дерево иллюстрирует эволюционные связи между различными организмами. Животные разбиты на две большие группы: Дейтеростомия (вторичноротые) и Протостомия (род когтистых рыб), разделенные около семисот миллионов лет назад. Дерево наглядно показывает, насколько далеко современные виды ушли от общих предков. Источник инфографики: http://nationalgeographic.org.

Ученые допускают, что подобные процессы происходят не только на Земле, но и на некоторых планетах в других звездных системах.

Вероятность того, что планета обитаема, оценивают по критериям жизнепригодности планет.

Самолет Ан-2 «Кукурузник»: характеристики, фото, видео

Рождение галактик

Галактики появились на свет вскоре после звезд. Считается, что первые светила вспыхнули никак не позднее, чем спустя 150 млн лет после Большого взрыва. В январе 2011 года команда астрономов, обрабатывавших информацию с космического телескопа «Хаббл», сообщила о вероятном наблюдении галактики, чей свет ушел в космос через 480 млн лет после Большого взрыва. В апреле еще одна исследовательская группа обнаружила галактику, которая, по всей вероятности, уже вполне сформировалась, когда юной Вселенной было около 200 млн лет.

Условия для рождения звезд и галактик возникли задолго до его начала. Когда Вселенная прошла возрастную отметку в 400 000 лет, плазма в космическом пространстве заменилась смесью из нейтрального гелия и водорода. Этот газ был еще чересчур горяч, чтобы стянуться в молекулярные облака, дающие начало звездам. Однако он соседствовал с частицами темной материи, изначально распределенными в пространстве не вполне равномерно — где чуть плотнее, где разреженнее. Они не взаимодействовали с барионным газом и потому под действием взаимного притяжения свободно стягивались в зоны повышенной плотности. Согласно модельным вычислениям, уже через сотню миллионов лет после Большого взрыва в космосе образовались облака темной материи величиной с нынешнюю Солнечную систему. Они объединялись в более крупные структуры, невзирая на расширение пространства. Так возникли скопления облаков темной материи, а потом и скопления этих скоплений. Они втягивали в себя космический газ, предоставляя ему возможность сгущаться и коллапсировать. Таким путем появились первые сверхмассивные звезды, которые быстро взрывались сверхновыми и оставляли после себя черные дыры. Эти взрывы обогащали космическое пространство элементами тяжелее гелия, которые способствовали охлаждению коллапсирующих газовых облаков и потому делали возможным появление менее массивных звезд второго поколения. Такие звезды уже могли существовать миллиарды лет и потому были в состоянии формировать (опять-таки с помощью темной материи) гравитационно связанные системы. Так возникли долгоживущие галактики, в том числе и наша.

«Многие детали галактогенеза еще скрыты в тумане, — говорит Джон Корменди. — В частности, это относится к роли черных дыр. Их массы варьируют от десятков тысяч масс Солнца до абсолютного на сегодняшний день рекорда в 6,6 млрд солнечных масс, принадлежащего черной дыре из ядра эллиптической галактики М87, расположенной в 53,5 млн световых лет от Солнца. Дыры в центрах эллиптических галактик, как правило, окружены балджами, составленными из старых звезд. Спиральные галактики могут вовсе не иметь балджей или же обладать их плоскими подобиями, псевдобалджами. Масса черной дыры обычно на три порядка меньше массы балджа — естественно, если оный наличествует. Эта закономерность подтверждается наблюдениями, охватывающими дыры массой от миллиона до миллиарда солнечных масс».

Как полагает профессор Корменди, галактические черные дыры набирают массу двумя путями. Дыра, окруженная полноценным балджем, растет за счет поглощения газа, который приходит к балджу из внешней зоны галактики. Во время слияния галактик интенсивность поступления этого газа резко возрастает, что инициирует вспышки квазаров. В результате балджи и дыры эволюционируют параллельно, что и объясняет корреляцию между их массами (правда, могут работать и другие, еще неизвестные механизмы).

Исследователи из Питтсбургского университета, Калифорнийского университета в Ирвине и Атлантического университета Флориды смоделировали ситуацию столкновения Млечного пути и предшественницы карликовой эллиптической галактики в Стрельце (Sagittarius Dwarf Elliptical Galaxy, SagDEG). Они проанализировали два варианта столкновений – с легкой (3х10^10 масс Солнца) и тяжелой (10^11 масс Солнца) SagDEG. На рисунке показаны результаты 2,7 млрд лет эволюции Млечного пути без взаимодействия с карликовой галактикой и с взаимодействием с легким и тяжелым вариантом SagDEG.

Иное дело безбалджевые галактики и галактики с псевдобалджами. Массы их дыр обычно не превышают 104−106 солнечных масс. По мнению профессора Корменди, они подкармливаются газом за счет случайных процессов, которые происходят недалеко от дыры, а не простираются на целую галактику. Такая дыра растет вне зависимости от эволюции галактики или ее псевдобалджа, чем и обусловлено отсутствие корреляции между их массами.

Марс

Следующим небесным телом по удаленности от Солнца является Марс. Это довольно яркая планета, которую можно видеть с Земли без специальных приборов.

За красноватый оттенок планете дали название в честь бога войны Древнего Рима. Спутники планеты – Деймос и Фобос (что означает Ужас и Страх) были сыновьями бога Марса.

Поле на Марсе очень слабое, и поэтому изначальная атмосфера была уничтожена солнечным ветром. В настоящее время четвертая планета от Солнца имеет весьма разреженную атмосферу, состоящую преимущественно из углекислого газа. Благодаря этому давление на ней в 160 раз меньше, чем на нашей планете.

Активные исследования Марса начали проводиться СССР и США начиная с 1960 года. Они позволили обнаружить на поверхности планеты лед и выдвинуть гипотезу, что раньше на ней была вода, а климат был более теплый и влажный. А наличие в атмосфере Марса метана позволило выдвинуть предположение, что на его поверхности могут обитать бактерии.

Если перечислять планеты Солнечной системы по порядку и по размеру, то Марс, находясь на четвертом месте от Солнца, по величине значительно уступает своим собратьям. С радиусом в 3390 км он превосходит по размеру лишь Меркурий, а масса его составляет лишь 1/10 часть земной.

Любопытно узнать не только какая четвертая планета от Солнца, но и ее уникальные особенности рельефа и климата. Состоит Марс преимущественно из камня и металла. На нем меняются времена года. Однако климат на этой планете значительно холоднее и суше. На ее поверхности есть полярные ледяные шапки, аналогичные земным, кратеры, вулканы и долины. Потухший вулкан Олимп является самой высокой известной горой на планетах Солнечной системы.

Четвертая планета от Солнца в цифрах:

  • год на Марсе составляет 687 земных дней;
  • гравитация составляет треть земной;
  • сутки на Марсе составляют примерно 24,6 часа;
  • температура на Марсе колеблется от -87˚С зимой до -5˚С летом.

Виды сейфов для хранения оружия

Все сейфы для хранения оружия разделяются на два типа, в зависимости от типа оружия, которое в нем будет храниться:

  • Пистолетные сейфы — обладают небольшими размерами, предназначены для хранения короткоствольного и травматического оружия.
  • Ружейные сейфы — имеют более крупные размеры, по сравнению с пистолетными сейфами, предназначены для хранения ружей, винтовок и карабинов.

Источники

Загрязнение и милитаризация орбиты Земли

За довольно короткий период люди успели серьезно намусорить в космосе, загрязнив орбиту обломками спутников и других аппаратов. Сегодня в каталоге Стратегического командования США находится 16 тыс. околоземных объектов, 17 тыс. – занесено в его российский аналог. В действительности, сколько их сегодня летает на орбите, не знает никто, и это большая проблема.

Разгонные блоки, отработавшее свое спутники, вторые ступени ракет и даже инструменты, потерянные космонавтами, – все это кружится на орбите, угрожая действующим аппаратам и населению планеты. Загрязнение космического пространства – серьезнейшая проблема, и если этот процесс не замедлится, то через несколько десятилетий мы просто не сможем выводить спутники. Происшествия с участием космического мусора на орбите уже случались, к счастью, пока без человеческих жертв.

Не меньшую тревогу вызывают риски, связанные с использованием радиоактивных материалов в космосе: многие космические аппараты оснащены ядерными энергетическими установками. В 1978 году на территории северной Канады упал советский военный спутник «Космос-954» с тридцатью килограммами урана на борту. К счастью, катастрофа произошла в малообитаемой местности, поэтому ущерб был минимален, но скандал получился весьма громким.

Мусор на околоземной орбите — это серьезная проблема, для которой пока нет решения

По разным оценкам, сейчас на орбите может находиться от нескольких десятков до сотни аппаратов с радиоактивными материалами на борту.

К сожалению, пока не существует эффективного способа «уборки» околоземной орбиты. Сегодня мы можем только отслеживать опасные объекты, не допуская их столкновения с действующими аппаратами.

Еще одной угрозой, стоящей сегодня перед человечеством, является милитаризация космического пространства. Существующие международные договоры, подписанные еще во времена холодной войны, не предусматривают полного запрета военного использования космоса. Появление новых технологий, таких как противоспутниковое оружие или орбитальные системы противоракетной обороны, могут превратить космос в еще одну арену гонки вооружений. Данная проблема требует не только уточнения действующих правовых норм, но и создания новых юридических инструментов, ограничивающих подобную деятельность.

Автор статьи:
Никифоров Владислав

Освоение космоса по странам

Космические агентства

Основная статья: Список космических агентств

  • Бразильское космическое агентство — основано в 1994 году.
  • Европейское космическое агентство (ЕКА) — .
  • Индийская организация космических исследований — .
  • Канадское космическое агентство — .
  • Китайское национальное космическое управление — .
  • Национальное космическое агентство Украины (НКАУ) — .
  • Национальное управление США по аэронавтике и исследованию космоса (НАСА) — .
  • Федеральное космическое агентство России (ФКА РФ) — ().
  • Японское агентство аэрокосмических исследований (JAXA) — .
  • Корейский комитет космических технологий — предположительно 1980-е.

Тест: Пять признаков весеннего охлаждения

Жизнь на Марсе

На Марсе уже нашли воду

Наш красный сосед. Четвертая планета от Солнца. Пожалуй, один из самых обсуждаемых вероятных кандидатов в обитаемые миры и потенциально первая цель человеческой колонизации. Несмотря на скепсис, эта планета является наиболее вероятным местом, где мы найдем жизнь.

Понятно, что она не будет представлена в виде зеленых человечков или любых других разумных форм. Однако аэрокосмическое агентство NASA, исследующее поверхность планеты своими марсоходами, нашло-таки доказательство, что здесь когда-то могла и может по-прежнему существовать по крайней мере микроскопическая жизнь.

Полученные данные указывают на то, что в прошлом у ныне полностью сухой планеты имелись настоящие потоки и реки из воды. Полагаясь на это, мы можем хотя бы предположить, что жизнь на ней могла каким-то образом выжить. Возможно, в рамках дальнейших исследований Марса ученые найдут-таки воду в жидкой форме, а не только в виде ледяных шапок на полюсах планеты.

Вальгалла: Сага о викинге (2009)

Перспективы комплекса «Спектр»

Несмотря на возрастающие по мере развития проекта возможности телескопов проекта «Спектр» и большое число стран-участников, разрабатывающих научное оборудование для него, перспективы довольно туманны.

Сокращение программы проводилось неоднократно и в хорошие годы: так, вместо первичного проекта «Спектр-РГ» был запущен «облегченный» вариант, несущий только 2 из 7 запланированных приборов.

Кроме того, он должен был запускаться до радиотелескопа «Спектр-Р», однако вышел на орбиту уже после того, как «предшественник» (по времени создания проекта) вывели из эксплуатации.

Следующие аппараты серии так же создаются при участии ряда западных стран, научная и финансовая коммуникация с которыми на данный момент осложняется.

Ввиду этого «Спектр-УФ» попадет в космос со значительным отставанием по срокам. Или сделает это без импортного оборудования, что снизит планируемые возможности.

Будем следить и рассказывать. Вероятно, уже в этом году программа «Спектр» сможет похвастаться очередной порцией уникальных результатов.

iPhones.ru

Самый крутой и скоро единственный во всем мире.

Земля

Одного мимолетного взгляда на планету Земля будет

достаточно, чтобы понять, насколько она отличается от других известных

нам планет. Даже если смотреть из космоса, планета Земля резко выделяется среди

остальных семи планет нашей солнечной системы. Планета Земля отличается приятными

ярко-голубым и белым цветами, тогда как все остальные

планеты (а также их спутники) имеют непривлекательный красный, оранжевый

или тускло-серый цвета. Более того, наша планета Земля – единственная из планет,

вращающихся вокруг Солнца, на которой могла бы существовать и существует

жизнь в известной нам форме.

Планета Земля состоит в основном из кислорода,

железа, серы, кремния, магнезия, алюминия, кальция, водорода и никеля

(вместе эти вещества составляют 98 % Земли). Остальные два процента

включают более сотни других элементов. В отличие от любой другой планеты,

планета Земля покрыта зеленой растительностью, огромнейшими

зелено-голубыми океанами, на ней содержится более миллиона островов,

сотни тысяч ручьев и рек, громадные массивы Земли, которые называются

континентами, горы, ледниковые покровы и пустыни, которые придают Земле

эффектное разнообразие цветов и текстур. Все другие известные планеты,

если не принимать во внимание происходящих на них ужасных катастроф, в

основном покрыты безжизненным слоем грунта или газа, который немного

изменяется только благодаря слабому движению ветра или потоков воздуха.

Совершенно бесплодная поверхность большинства планет разительно

отличается от нашей планеты с ее яркими цветами – оттенками зеленого,

голубого и белого, ведь поверхность всех других планет имеет тускло-серый

или коричневый оттенок, и, зачастую, покрыта толстым слоем атмосферы.

В буквально каждой экологической нише

поверхности нашей планеты можно найти какой-то из видов жизни. Даже в озерах

чрезвычайно холодной Антарктики можно найти живых существ, с трудом

различимых под микроскопом. В кусочках мха и лишайника обитают крохотные

бескрылые насекомые и растут растения, цветущие каждый год. Жизнь

на Земле присутствует везде – от самых верхних слоев атмосферы

до дна океана, от самых холодных точек полюсов до самых жарких мест

экватора. До сегодняшнего дня ни на одной другой планете не было найдено

доказательств существования жизни.

Планета Земля имеет огромные размеры —8000 миль (

12756 км) и обладает массой в 6.6 x 1021 тонн. Планета Земля находится

на расстоянии приблизительно в 93 миллиона миль от Солнца. Если бы Земля

вращалась вокруг Солнца по своей орбите длиной в 584 миллионов миль быстрее, ее орбита стала бы более длинной, и Земля отдалилась бы

от Солнца на большее расстояние. А если бы она слишком далеко

отошла от небольшой обитаемой зоны, все виды жизни на Земле прекратили бы

свое существование. Если бы планета Земля двигалась по своей орбите

медленней, она бы приблизилась к Солнцу, что также привело бы к

исчезновению жизни.

Путешествие Земли вокруг солнца, которое

занимает 365 дней, 6 часов, 49 минут и 9.54 секунд (звездный год),

всегда происходит с точностью до одной тысячной секунды!

Если бы средняя годовая температура Земли изменилась хотя бы на несколько

градусов, большинство форм жизни в конце-концов погибли бы от перегрева

или замерзания. Такая перемена нарушила бы водно-ледный баланс, и другие

важнейшие балансы, что привело бы к катастрофическим последствиям. Если

бы планета Земля вращалась по своей оси медленнее, вся жизнь со временем вымерла

бы либо от замерзания ночью (из-за недостатка солнечного тепла), либо от

перегрева днем (из-за жары от солнца).

Околоземное космическое пространство

Околоземное космическое пространство ( ОКП) представляет собой внешнюю газовую оболочку, которая окружает планету. Оно играет роль в сложнейших солнечно-земных взаимосвязях, определяющих условия жизни на Земле.

Околоземное космическое пространство содержит радиационный пояс, представляющий собой гигантскую магнитную ловушку, которая захватывает выбрасываемые Солнцем электроны и протоны, и они совершают внутри пояса колебательные и вращательные движения вдоль и вокруг магнитных силовых линий. Во внутренней части преобладают электроны с энергией десятки и сотни электронвольт, а во внешней — протоны с энергией в сотни тысяч электронвольт. Во время солнечных возмущений потоки частиц ( солнечный ветер) приводят к увеличению поглощения и искажению траекторий распространения радиоволн.

В околоземном космическом пространстве на расстоя нии около 36 тыс. км от поверхности Земли существует не только магнитное, но и электрическое поле.

В околоземном космическом пространстве наблюдаются достаточно сильные потоки заряженных частиц ( главным образом, протонов и электронов), локализованные в радиационных поясах Земли. За пределами магнитосферы Земли ( на удалениях более 60000 — 100000 км), а также в области высоких широт ( более 60) на элементы и аппаратуру КА могут воздействовать квазистационарные потоки солнечного ветра ( протоны, электроны и альфа-частицы с энергией в несколько килоэлектронвольт) и потоки галактических космических лучей ( протоны и альфа-частицы очень высокой энергии с плотностью 2 — 5 частиц / ( см2 — с), а также потоки протонов, электронов и альфа-частиц в широком энергетическом диапазоне, возникающие в случайные моменты времени при крупных солнечных вспышках.

Земли и околоземного космического пространства, обусловленное физ.

Чем опасно загрязнение околоземного космического пространства.

Пространственное распределение ( а давления и ( б удельной.

Анализ экологической обстановки околоземного космического пространства позволяет сделать вывод, что вероятность поражения КА фрагментами космического мусора очень велика.

Основным источником загрязнения околоземного космического пространства ( ОКП) являются запуски космических ракет и полеты кораблей многоразового использования, сопровождающиеся выбросом продукции сгорания топлива двигателей; электромагнитные излучения радиопередающих систем.

Среда распространения радиоволн представляет собой околоземное и космическое пространство. Околоземное пространство ( до высоты 1000 км) называют атмосферой. Атмосфера решающим образом влияет на условия распространения радиоволн.

В результате вывода в околоземное и космическое пространство объектов со случайными орбитами и общего засорения этого пространства космическими объектами возникает загрязнение космоса. Наблюдались случаи разрушения ядерных реакторов, находящихся на орбитах, что приводит к радиоактивному загрязнению космоса.

Магнитосфера Земли — область околоземного космического пространства, где физические процессы управляются в основном геомагнитным полем.

Серьезную опасность представляет состояние околоземного космического пространства и прежде всего той его части, которую образует верхняя атмосфера. Запуск ракет, ликвидация орбитальных космических аппаратов с образованием космического мусора, электромагнитное загрязнение, проникновение загрязняющих веществ из приземной атмосферы нарушают естественные свойства ближнего космоса. Антропогенное воздействие на данное пространство вследствие его интенсивного освоения достигло критического уровня, при котором газовая оболочка Земли утрачивает способность защищать все живое от губительной радиации. Известная проблема озонового слоя является частью проблемы охраны ближнего космоса.

Магнитосфера Земли — область околоземного космического пространства, где физические процессы управляются в основном геомагнитным полем.

Космические скорости для Земли.

Космический конус Циолковского

Первым идею — выращивать растения в космосе — выдвинул основоположник космонавтики Константин Циолковский. Задолго до начала пилотируемых полетов он заявил, что в будущем растения станут главным источником питания и поддержания атмосферы на космических кораблях. Он придумал и сделал зарисовку, как можно решить проблему невесомости и отсутствия гравитации в условиях космоса.

В этой работе К. Э. Циолковский подробно описал не только, как можно искусственно создать гравитацию для растений, но и продумал, какие это должны быть растения: плодовитые, мелкие, без толстых стволов. По его задумке такие растения смогут обеспечивать колонизаторов космоса биологически активными веществами и микроэлементами, а также регенерировать кислород и воду.

За много десятилетий до полётов в космос Константин Эдуардович понял проблему с которой в будущем столкнулись космонавты — от консервированной и сублимированной пищи многие из них теряли аппетит, начиналась депрессия и ели только потому, что это было необходимо для поддержания сил.

Измерение расстояния в космосе

В астрономии принято использовать свои установленные единицы измерения.

Громадные просторы требуют более масштабных способов исчисления, нежели мы привыкли использовать. Поэтому ученые придумали несколько основных мер измерения.

Световой год

Соответствует 63 241 АЕ, или 9 460 730 472 580 км. Приравнивается он к расстоянию, за которое свет проходит в вакууме за один земной год. Интересно, что данная единица измерения используется только в литературе, но не в научных трудах.

Парсек

Составляет расстояние до звезды, у которой годичный параллакс равен одной угловой секунде. А точнее это 3,2616 световых лет, около 206 264,8 АЕ или 3,0856776×1016 метра.

Современные методы лазерной локации и радиолокации

Используют эти приемы для точного измерения расстояния между объектами Солнечной системы.

Метод радиолокации заключается в применении радиосигнала. Его посылают к объекту наблюдения и измеряют время, затраченное на его движение туда и обратно. К сожалению, применение радиосигналов возможно при небольших расстояниях.

Для более дальних измерений прибегают к методу лазерной локации. При этом способе вместо радиосигнала посылают световой луч. С его помощью по тому же сценарию рассчитывают расстояние до исследуемого объекта. Стоит отметить, что данный метод очень точный.

Метод тригонометрического параллакса

Более простой способ и используется для вычисления расстояний до самых дальних тел.

Вспомним принципы геометрии. Необходимо провести отрезок между двумя точками на Земле. Затем выбрать на небе объект. Это и будет вершина треугольника. Нужно замерить углы между образовавшимся отрезком и прямыми до вершины. Теперь, используя замеры стороны и двух углов треугольника, рассчитываем остальные части.

Метод стандартных свечей

Его применяют для измерения расстояний в других галактиках. Все мы знаем, что чем дальше источник света, тем он менее яркий. В самом деле, на этом правиле основан данный метод. К сожалению, он не предполагает высокую точность измерений, но имеет место на существование.

Определение космических расстояний очень сложный и трудоёмкий процесс. Он, разумеется, требует большого внимания. Но человеческий разум справлялся и не с такими сложными задачами. Достижения и прорыв учёных поистине заслуживают уважения.

Спутник Титан

На Титане давно ищут жизнь

Крупнейший спутник Сатурна, шестой планеты от Солнца. Эта луна рассматривается в качестве потенциального кандидата на роль обитаемого мира, но, возможно, не в том смысле, в котором мы могли подумать. Спутник не совсем подходит под описание мира, находящегося в обитаемой зоне. Но на нем есть вода и другие жидкости. Просто на нем нет жидкой воды. Вода на этом планетарном объекте представлена в виде льда – температуры там очень низкие.

Тем не менее находящиеся там жидкости состоят из углеводородов. Углеводород – это химическое соединение водорода и углерода в различных пропорциях. На Земле наиболее распространенными видами углеводорода являются газы метан и пропан. Это и может являться ключевым фактором, позволяющим представить жизнь на Титане совершенно с другой стороны. Вполне возможно, что потенциально имеющиеся там формы жизни не выживут в условиях жидкой воды, но будут вполне комфортно себя чувствовать в среде углеводородов.

Несмотря на то, что перед наукой все еще остались некоторые вопросы (например, о том, способна ли жизнь существовать не только в воде), отбрасывать возможность наличия жизни на Титане ученые пока точно не собираются.

Полеты в космическое пространство

Чтобы преодолеть притяжение нашей планеты и выйти на ее орбиту, физическое тело должно достигнуть первой космической скорости –7,9 км/с. Преодолеть этот рубеж сумел советский «Спутник-1» в 1957 году.

Для победы над гравитацией Земли и выхода в межпланетное пространство, аппарат должен двигаться быстрее 11 км/с. Это вторая космическая скорость. Впервые она была достигнута в январе 1959 года советским автоматическим зондом «Луна-1».

Космическое пространство — максимально враждебная для человека среда

Для выхода в межзвездное пространство и преодоления притяжения Солнца, необходимо развить третью космическую скорость, которая составляет 16,67 км в секунду. Пока наибольшей скоростью покидания Земли обладал аппарат «Новые горизонты» – 16,26 км/с. По пути он смог прибавить еще 4 км/с за счет гравитационного маневра около Юпитера. В будущем это позволит ему покинуть пределы нашей системы и отправиться в межзвездное пространство.

Для преодоления притяжения Млечного Пути и выхода за его пределы необходима четвертая космическая скорость — 550 км/с. Солнце относительно центра галактики двигается медленнее – со скоростью 220 км/с.

Архив блога

  • ► 

    2018

    (2)

    ► 

    февраля

    (2)

  • ► 

    2015

    (389)

    ► 

    февраля

    (15)

    ► 

    января

    (374)

  • ▼ 

    2014

    (79)

    • ▼ 

      декабря

      (70)

    ► 

    января

    (9)

  • ► 

    2013

    (20)

    ► 

    января

    (20)

  • ► 

    2012

    (15)

    ► 

    января

    (15)

  • ► 

    2011

    (24)

    ► 

    января

    (24)

  • ► 

    2010

    (25)

    ► 

    января

    (25)

  • ► 

    2009

    (20)

    ► 

    марта

    (1)

    ► 

    февраля

    (2)

    ► 

    января

    (17)

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector